288 research outputs found

    The biomechanics of fast-starts during ontogeny in the common carp Cyprinus carpio

    Get PDF
    Common carp Cyprinus carpio L. were reared a constant temperature of 20 degrees C from the larval (7 mm total length) to the juvenile (80 mm) stage. Body morphology and white muscle mass distribution were measured. Fast-start escape responses were recorded using high-speed cinematography from which the velocities, accelerations and hydrodynamic power requirements were estimated. All three measures of fast-start performance increased during development. White muscle contraction regimes were calculated from changes in body shape during the fast-starts and used to predict the muscle force and power production for all longitudinal positions along the body. Scaling arguments predicted that increases in body length would constrain the fish to bend less rapidly because the cross-sectional muscle area, and hence force production, does not increase at the same rate as the inertial mass that resists bending. As predicted, the increases in body length resulted in decreases in muscle shortening velocity, and this coincided with increases in both the force and power produced by the muscles. The hydrodynamic efficiency, which relates the mechanical power produced by the muscles to the inertial power requirements in the direction of travel, showed no significant change during ontogeny. The increasing hydrodynamic power requirements were thus met by increases in the power available from the muscles. The majority of the increases in fast-start swimming performance during ontogeny can be explained by size-dependent increases in muscle power output. For all sizes, there was a decrease in muscle-mass-specific power output and an increase in muscle stress in a posterior direction along the body due to systematic variations in fibre strain. These changing strain regimes result in the central muscle bulk producing the majority of the power requirements during the fast-start, and this power is transmitted to the tail region of the fish and ultimately to the water via muscle in the caudal myotomes

    Flight of the dragonflies and damselflies

    Get PDF
    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes

    Movement Complexity and Neuromechanical Factors Affect the Entropic Half-Life of Myoelectric Signals

    Get PDF
    Appropriate neuromuscular functioning is essential for survival and features underpinning motor control are present in myoelectric signals recorded from skeletal muscles. One approach to quantify control processes related to function is to assess signal variability using measures such as Sample Entropy. Here we developed a theoretical framework to simulate the effect of variability in burst duration, activation duty cycle, and intensity on the Entropic Half-Life (EnHL) in myoelectric signals. EnHLs were predicted to be <40 ms, and to vary with fluctuations in myoelectric signal amplitude and activation duty cycle. Comparison with myoelectic data from rats walking and running at a range of speeds and inclines confirmed the range of EnHLs, however, the direction of EnHL change in response to altered locomotor demand was not correctly predicted. The discrepancy reflected different associations between the ratio of the standard deviation and mean signal intensity (Ist:It¯¯¯¯) and duty factor in simulated and physiological data, likely reflecting additional information in the signals from the physiological data (e.g., quiescent phase content; variation in action potential shapes). EnHL could have significant value as a novel marker of neuromuscular responses to alterations in perceived locomotor task complexity and intensity

    How do the mechanical demands of cycling affect the information content of the EMG?

    Get PDF
    Purpose: The persistence of phase-related information in EMG signals can be quantified by its entropic half-life, EnHL. It has been proposed that the EnHL would increase with the demands of a movement task, and thus increase as the pedalling power increased during cycling. However, simulation work on the properties of EMG signals suggests that the EnHL depends on burst duration and duty cycle in the EMG that may not be related to task demands. This study aimed to distinguish between these alternate hypotheses. Methods: The EnHL was characterized for 10 muscles from nine cyclists cycling at a range of powers (35 to 260 W) and cadences (60 to 140 r.p.m.) for the raw EMG, phase-randomized surrogate EMG, EMG intensity and the principal components describing the muscle coordination patterns. Results: There was phase-related information in the raw EMG signals and EMG intensities that was related to the EMG burst duration, duty cycle pedalling cadence and power. The EnHLs for the EMG intensities of the individual muscles (excluding quadriceps) and for the coordination patterns decreased as cycling power and cadence increased. Conclusions: The EnHLs provide information on the structure of the motor control signals and their constituent motor unit action potentials, both within and between muscles, rather than on the mechanical demands of the cycling task per se

    Passive muscle-tendon unit gearing is joint dependent in human medial gastrocnemius

    Get PDF
    © 2016 Hodson-Tole, Wakeling and Dick. Skeletal muscles change length and develop force both passively and actively. Gearing allows muscle fiber length changes to be uncoupled from those of the whole muscle-tendon unit. During active contractions this process allows muscles to operate at mechanically favorable conditions for power or economical force production. Here we ask whether gearing is constant in passive muscle; determining the relationship between fascicle and muscle-tendon unit length change in the bi-articular medial gastrocnemius and investigating the influence of whether motion occurs at the knee or ankle joint. Specifically, the same muscle-tendon unit length changes were elicited by rotating either the ankle or knee joint whilst simultaneously measuring fascicle lengths in proximal and distal muscle regions using B-mode ultrasound. In both the proximal and distal muscle region, passive gearing values differed depending on whether ankle or knee motion occurred. Fascicle length changes were greater with ankle motion, likely reflecting anatomical differences in proximal and distal passive tendinous tissues, as well as shape changes of the adjacent mono-articular soleus. This suggests that there is joint-dependent dissociation between the mechanical behavior of muscle fibers and the muscle-tendon unit during passive joint motions that may be important to consider when developing accurate models of bi-articular muscles

    Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity

    Get PDF
    Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))

    Analysis and modelling of muscles motion during whole body vibration

    Get PDF
    The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation

    A Finite Element Model Approach to Determine the Influence of Electrode Design and Muscle Architecture on Myoelectric Signal Properties.

    Get PDF
    INTRODUCTION: Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin's surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. METHOD: A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. RESULTS: The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25-30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. CONCLUSION: Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles)

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (&lt;100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica
    corecore