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Abstract  18 

Purpose: The persistence of phase-related information in EMG signals can be quantified by its entropic 19 

half-life, EnHL. It has been proposed that the EnHL would increase with the demands of a movement 20 

task, and thus increase as the pedalling power increased during cycling. However, simulation work on 21 

the properties of EMG signals suggests that the EnHL depends on burst duration and duty cycle in the 22 

EMG that may not be related to task demands. This study aimed to distinguish between these alternate 23 

hypotheses. Methods: The EnHL was characterized for 10 muscles from nine cyclists cycling at a range 24 

of powers (35 to 260 W) and cadences (60 to 140 r.p.m.) for the raw EMG, phase-randomized surrogate 25 

EMG, EMG intensity and the principal components describing the muscle coordination patterns. 26 

Results: There was phase-related information in the raw EMG signals and EMG intensities that was 27 

related to the EMG burst duration, duty cycle pedalling cadence and power. The EnHLs for the EMG 28 

intensities of the individual muscles (excluding quadriceps) and for the coordination patterns decreased 29 

as cycling power and cadence increased. Conclusions: The EnHLs provide information on the structure 30 

of the motor control signals and their constituent motor unit action potentials, both within and between 31 

muscles, rather than on the mechanical demands of the cycling task per se. 32 

 33 

Key words: Sample entropy, entropic half-life, principal component analysis, skeletal muscle, 34 

coordination, firing statistic 35 

 36 

  37 
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Introduction 38 

The EMG signal represents the superposition of motor unit action potentials from activated 39 

motor units and is commonly assessed to identify characteristics such as firing rates of individual units 40 

(1) or recruitment of populations of units (2). Within an individual muscle, more generalized features of 41 

activity, such as the time of onset and offset and the magnitude of each burst, can also be determined 42 

from fluctuations in the intensity envelope of the EMG recorded during activities such as cycling. 43 

Additionally, the coordination of multiple muscles within each limb can also be assessed and has been 44 

shown to be a key determinate to cycling performance (3). 45 

However, the structure (temporal organization of variability) within the EMG signal may also 46 

contain information on the challenge posed by a movement task and give us new insight to the motor 47 

control strategies that govern the muscles to meet these challenges. One way to determine the structure 48 

of a signal is to calculate its Entropy (4), and for EMG signals this can be done using a particular 49 

approach termed Sample Entropy. Sample Entropy (5) identifies how often small segments of data (with 50 

m sample points) from a signal would be identified within the signal (within a specified tolerance) 51 

compared to segments that contained one more (m+1) sample point. A low value of Sample Entropy 52 

reflects a high degree of structure in the signal, with higher Sample Entropy reflecting a more chaotic 53 

structure. This approach was further developed (6) and has been used to quantify the rate at which signal 54 

structure decays within EMG signals (7) using a measure termed the entropic half-life, EnHL. 55 

Calculation of EnHL involves resampling the original EMG signal at increasingly larger time steps, to 56 

identify the time-scale at which structure in the signal is lost as the resampled signal transitions to 57 

containing random fluctuations. 58 
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 Muscle activity during cycling varies with both cadence and power (3, 8-15). When increasing 59 

the pedalling cadence the burst duration decreases (8) but not as much as the cycle duration, and so the 60 

duty cycle increases. All EMG signals recorded during cycling have structure reflecting the 61 

neuromuscular control of their motor units, and a theoretical analysis of the factors that shape surface 62 

EMG signals and their effect on EnHLs predicted that EMG signals at the fastest cadences (short burst 63 

durations and longer duty cycles) would result in shorter EnHLs (7).  However, this is contrary to the 64 

view that high-cadence cycling represents a demanding task that would result in greater, or more 65 

persistent, structure to the neuromuscular control strategy. Whether EMG signal structure during cycling 66 

reflects structure to the neuromuscular control strategy is therefore not clear. We therefore aim to 67 

address this gap in knowledge by investigating structure of raw EMGs, EMG intensity and muscle co-68 

ordination patterns and how EnHL changes in response to cycling demand. Below we provide a 69 

rationale for why each signal may be expected to be structured and the physiological responses to the 70 

cycling demand that may influence that structure. 71 

Within the raw EMG each motor unit action potential occurs at a distinct time and leaves 72 

characteristic spectral components in the EMG signal (16). If the variability in the EMG signal is 73 

organized over time (i.e. it is structured) the action potential shapes, amplitudes and the relative phase 74 

between different motor units potentials’ would be expected to influence the characteristics of the 75 

structure. As motor unit recruitment responds to the mechanical demands of cycling (17), changes in 76 

raw EMG signal structure would be predicted to occur in response to altered cycling mechanical 77 

demands. 78 

The EMG intensity provides an envelope of the signal, smoothing out some of the time-79 

dependent fluctuations from the raw EMG signal. It is therefore possible that EMG intensities from 80 

individual muscles may be more structured (i.e. fewer random fluctuations) than the raw EMG. This 81 
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may mean that burst parameters within each muscle, such as burst duration and duty cycle, are the main 82 

factors influencing the individual EnHLs. Cycling at higher cadences results in decreased burst duration 83 

(8), and higher duty cycles, that have led to predictions of shorter EnHLs (7). These predictions have yet 84 

to be tested on experimental data. 85 

Muscle coordination patterns that consist of the EMG intensities from many different muscles 86 

may show greater variability due to the higher-dimensionality of the additional muscles, and so the 87 

EnHLs for coordination may be shorter than for the individual muscles as the more variable structure of 88 

the coordination may dissipate over shorter time scales. EnHLs from such multi-muscle coordination 89 

patterns may reflect the net response of the neuromuscular system and may therefore provide insight 90 

into the structure of variability of muscle recruitment patterns tolerated by the nervous system for 91 

different task demands. Enders et al. (18) showed an increase in EnHL from 9 ms to 16 ms between 150 92 

W and 300 W power conditions for cycling at 90 r.p.m.  However, it is not known if this finding can be 93 

generalized across a range of cycling conditions particularly as the variability in and composition of the 94 

muscle coordination during cycling depends in a complex and non-linear fashion on both the power 95 

output and the cadence (8). 96 

The purpose of this study was thus to explore the EnHL from the level of the raw EMG signal 97 

through to multi-muscle co-ordination patterns during cycling. We address the question of whether the 98 

EnHLs at these different signal levels vary with the opposing demands of the cycling task (high power 99 

output and cadence), or with EMG parameters (burst duration and duty cycle). 100 

 101 

Methods 102 
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The entropic half-life, EnHL, was determined from a large cycling data set that has been 103 

described in a previous study (15). In brief, nine club to national level racing cyclists pedaled on an 104 

indoor ergometer at a range of cadences (60, 80, 100, 120 and 140 r.p.m.) at a low and fixed crank 105 

torque of 6.5 N m, and also cycled at a range of crank torques (12.9, 25.1, 32.4 and 39.9 N m) at the low 106 

cadence of 60 r.p.m. Cyclists pedaled for 5-10 seconds to reach a steady-state speed, and then data were 107 

recorded for a further 30 s for each trial. The cycle conditions were presented in a random order, and 108 

repeated in three blocks in order to minimize bias due to increasing fatigue and body temperature. A 109 

total of 6804 pedal cycles were analyzed (9 subjects x 3 blocks x 9 conditions x 28 cycles per condition). 110 

Pedalling cadence was maintained using visual feedback, and independently recorded with a pedal 111 

switch; post analysis showed it was on average 1.3 r.p.m. higher than the target velocity, and varied with 112 

a standard deviation of only 1.1 r.p.m. within each trial; there was a slight increase in variability in pedal 113 

cadence at the higher cadences, with the 140 r.p.m. trials having standard deviations of 1.8 r.p.m..  A 45 114 

s rest period was given between each condition. Each participant gave written informed consent in 115 

accordance with the Simon Fraser University’s policy on research using human subjects.  116 

Bipolar Ag/AgCl surface EMG electrodes (10 mm diameter, 21 mm interelectrode distance) 117 

were placed in the centre of the muscle bellies of the tibialis anterior (TA), medial gastrocnemius (MG), 118 

lateral gastrocnemius (LG), soleus (Sol), vastus medialis (VM), rectus femoris (RF), vastus lateralis 119 

(VL), biceps femoris long head (BF), semitendinosus (ST), and gluteus maximus (Glut) of the left leg 120 

and surface EMG was recorded at 2000 Hz. A pedal switch allowed the time of top-dead-centre to be 121 

identified.  122 

The entropic half-life, EnHL, was calculated for each signal using the following procedure. 123 

Initially the EnHL was calculated from the raw EMG signals (as directly recorded from the EMG 124 

amplifiers). These signals were filtered (Butterworth, high-pass with 10 Hz cutoff) and standardized to 125 
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have a mean of zero and standard deviation of one. The SampEn was calculated using a freely available 126 

software package (19). SampEn(m, r, N) quantifies the regularity of a time series of length N, reflecting 127 

the conditional probability that two sequences of m consecutive data points, similar to one another 128 

within a tolerance (r), will remain similar when a consecutive data point is added (20). Values of  m=0 129 

and m=1, were recorded with r=0.2 for a range of reshape-scales from 1 ms to 1 s (6).  For each reshape-130 

scale, the SampEn for m=1 was normalized to the corresponding SampEn for m=0 (which can be 131 

interpreted as the negative logarithm of the probability of a match of length one (19)): this stage is 132 

computationally faster but equivalent to normalizing to the random permutation of the signal as 133 

described by Enders and co-workers (18). EnHL is the time-scale at which the normalized SampEn 134 

(from across the reshape-scales) reached a value of 0.5 (18), indicating the time-scale that the time series 135 

transitioned from ordered to random structure. It therefore provides a measure of the persistence of 136 

structure in the EMG intensity envelopes from each individual muscle.  137 

The intensity envelope for the EMG signals was calculated for each muscle, using an EMG-138 

specific wavelet analysis (21), where each wavelet k had a centre frequency fc(k), and the sum of the 139 

intensities ik over the frequency band 11 to 432 Hz (1 ≤ k ≤ 10) generated the total intensity that was a 140 

close approximation to the power within the EMG signal. The mean frequency fm for the EMG intensity 141 

(16) was: 142 

     𝑓m =
∑ 𝑓c(𝑘)𝑖𝑘𝑘

∑ 𝑖𝑘𝑘
 143 

The EMG intensities for each muscle and trial were mean normalized and each intensity trace was 144 

resampled at 1000 Hz. The burst durations for the normalized EMG intensities were taken as the 145 

duration that the intensity was greater than 5% of the maximum for each pedal cycle, and the duty cycle 146 

was the proportion of this burst duration relative to the period of each pedal cycle. The mean frequencies 147 
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of the EMG intensities were calculated for each pedal cycle. EnHLs were calculated for the EMG 148 

intensities in the same manner as describe above for the raw EMG signals. 149 

The muscle coordination patterns were quantified by principal component analysis. For each 150 

cycling trial the coordination patterns for each time instant were generated from the normalized EMG 151 

intensities for all ten muscles, and placed in an p × N matrix A (p = 10 muscles, N is number of time 152 

points for 28 pedal cycles at the 1000 Hz sample rate). The mean intensity vector (mean intensity for 153 

each muscle in A) was subtracted from A, from which the covariance matrix B was calculated. The 154 

principal components, PCs, of A were described by Eigen analysis of B: the PC loading scores were 155 

calculated from ξ′A, where ξ′ are the transpose of the Eigen vectors of B and were ordered into 156 

decreasing Eigen values. The loading scores for the first six PCs explained 91 % of the variance within 157 

matrix B, and were used as signals for the EnHL analysis, as above, providing a measure of the 158 

persistence of structure in the multi-muscle coordination patterns. 159 

The EnHL was additionally calculated for phase-randomized surrogates (18) of the raw EMG 160 

signals and the EMG intensity envelopes for each muscle and each trial. Phase-randomized surrogate 161 

signals have the same power spectrum and auto- correlation as the original signal; however, the structure 162 

encoded in the phase is removed. The process of phase-randomization removes structure due to the 163 

bursting patterns of the EMG, due to regularity of firing or synchronization of the motor units, and from 164 

the shape of the individual motor unit action potentials (Fig. 1). Thus, the surrogate signals can be used 165 

as reference values for signals with no structure (18).  166 

The factors influencing the EnHL values were tested using mixed model analyses of covariance 167 

(Minitab version 16, State College, PA): cadence, power, burst duration, duty cycle and EMG intensity 168 

were included as covariates, and subject was a random factor. ANCOVAs were evaluated for the EnHL 169 
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for the raw EMG and for the EMG intensities, and these used the muscle as an additional factor and 170 

muscle × power, cadence × power and muscle × cadence as interaction terms. A third ANCOVA was 171 

evaluated for the EnHL for PC loading scores, and this used the PC number as an additional factor, and 172 

PC number × power, cadence × power and PC number × cadence as interaction terms. For this 173 

ANCOVA the burst duration, duty cycle and EMG intensity values used as covariates were taken as the 174 

mean values across the ten muscles. Statistical effects were deemed significant at p<0.05, and data are 175 

reported as mean ± standard error of the mean. 176 

 177 

Results 178 

The cycling conditions encompassed a range of powers, of which a set was at a low-cadence of 179 

60 r.p.m. but at increasing crank torques, whilst a second set was at a low crank torque but with 180 

increasing cadence. There was a general increase in EMG intensity for each muscle with power, with 181 

greater EMG intensities occurring for the higher-cadence conditions for each given power (Fig. 2A). 182 

There was a cadence-specific effect on the burst durations with shorter burst durations occurring for 183 

faster cycling cadences (Fig. 2B). There was a general but small increase in duty cycle with power for 184 

all muscles (Fig. 2C).  185 

The mean EnHLs for each muscle for the phase-randomized surrogate EMGs ranged between 186 

5.23 ± 0.04 to 9.05 ± 0.05 ms (N = 269). These EnHLs showed a strong negative correlation with the 187 

mean frequency of the EMG intensities (r2 = 0.94; Fig. 3A), with even higher correlations occurring (r2 188 

= 0.98) when the EnHLs for the phase-randomized surrogate EMG intensities were correlated against 189 

the period of the mean frequencies (1 / mean frequency) of the EMG intensities. 190 
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The mean EnHLs for each muscle for the raw EMGs were typically greater than their phase-191 

randomized values and ranged between 1.32 ± 0.10 and 45.64 ± 5.50 ms  (N = 28) for the least 192 

demanding condition of 60 r.p.m. at 35 W. The mean EnHLs for each muscle for the raw EMGs showed 193 

a general decrease at the higher cadences when the torque was held constant (Fig. 4A). As the torque 194 

increased for the low cadence conditions there was an increase in EnHL for the raw EMG signals for 195 

VM, RF, VL and Glut, with a decrease for the remaining muscles (Fig. 4B). The EnHLs for each muscle 196 

for the raw EMGs neither correlated with the EnHLs for the phase-randomized raw EMGs (0.01 < r2 < 197 

0.15), nor with the mean frequency of the EMG intensities (0.01 < r2 < 0.10; Fig. 3B). 198 

The EnHLs for the EMG intensities ranged between 20.26 ± 1.40 and 36.70 ± 1.67 ms  (N = 28) 199 

for the least demanding condition of 60 r.p.m. at 35 W. There was a general decrease in the EnHLs to 200 

values between 17.98 ± 0.59 and 24.16 ± 0.38 ms as power output increased for both the increasing 201 

torque and increasing cadence conditions, with the EnHL being more sensitive to changes in cadence 202 

than crank torque (Fig. 5). However, the exception to this was the quadriceps muscles that increased 203 

their EnHLs for the increasing torque conditions to reach their maxima, between 32.81 ± 1.80 and 35.71 204 

± 1.44 ms, at the 260 W power. The ANCOVA showed that decreases in EnHL were significantly 205 

associated with increases in both cadence and power, and the EnHL showed a significant negative 206 

association with EMG intensity and duty cycle, and a positive association with burst duration (Table 1). 207 

The mean EnHLs for the EMG intensities for each muscle were greater than the mean EnHLs for the 208 

intensities of the phase-randomized surrogate EMG and correlated with neither the mean frequencies of 209 

the EMG intensities (r2 < 0.01), nor with the EnHLs for the intensities of the phase-randomized signals 210 

(r2 < 0.01). 211 

 212 
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Table 1. Statistical results for the ANCOVAs. Columns show the effect of the covariate 213 
(up/down arrow indicate positive/negative direction of effect; - indicates no significant effect), the 214 
degrees of freedom (DF), F-value and p-value for the tests. Rows show the sources of variation: 215 
factors (subject: random; PC number and muscle), covariates (cycling cadence and power; EMG 216 
intensity; burst duration (BD) and duty cycle (DC)), interaction terms, and the error term. 217 

 Raw EMG EMG intensity Muscle coordination 

 Covar. DF F p Covar DF F p Covar DF F p 

Subject  9 16.1
7 

<0.00
1 

 9 10.29 <0.00
1 

 9 30.9
0 

<0.00
1 

PC #          5 3.51 0.004 

Muscle  9 53.2
6 

<0.00
1 

 9 20.32 <0.00
1 

    

Cadence - 1 1.29 0.256  1 9.58 0.002  1 6.17 0.013 

Power  1 8.43 0.004  1 20.44 <0.00
1 

- 1 0.21 0.648 

Intensity  1 304.
0 

<0.00
1 

 1 17.89 <0.00
1 

- 1 0.29 0.587 

BD  1 14.1
2 

<0.00
1 

 1 52.97 <0.00
1 

 1 4.59 0.032 

DC  1 22.3
7 

<0.00
1 

 1 195.3
9 

<0.00
1 

- 1 0.93 0.335 

Muscle × 
Power 

 9 31.8
4 

<0.00
1 

 9 41.45 <0.00
1 

    

Muscle × 
Cadence 

 9 24.6
5 

<0.00
1 

 9 6.38 <0.00
1 

    

Cadence 
× Power 

 1 5.33 0.021  1 30.63 <0.00
1 

 1 7.10 0.008 

PC # × 
Power 

         5 1.40 0.222 

PC # × 
cadence 

         5 9.52 <0.00
1 

Error  26
06 

   263
6 

   157
9 

  

 218 

The EnHLs for the PC loading scores describing the muscle coordination patterns were shorter 219 

than the EnHLs for the EMG intensities for the individual muscles (Fig. 6). The EnHLs for the muscle 220 

coordination patterns ranged between 14.81 ± 1.22 and 21.80 ± 1.81 ms (N = 28) for the least 221 
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demanding condition of 60 r.p.m. at 35 W. The ANCOVA (Table 1) showed significant interaction 222 

effects PC number, with the higher PCs resulting in lower EnHLs (Fig 5A). The EnHLs increased with 223 

burst duration, and a significant interaction between PC number × cadence showed a greater cadence 224 

dependence for the higher PCs (Fig. 6A). 225 

 226 

Discussion 227 

Is there information in the EMG signal related to EnHL? 228 

The entropic half-life analysis in this study shows that there is persistent and non-random structure in all 229 

levels of the EMG signals analysed, indicating that further investigation of structure in EMGs is 230 

warranted. The phase of a signal has been shown to contain important information (22). At the level of 231 

the raw EMG this may reflect the shapes of the MUAPs, variability (or lack-of) in the firing rates of the 232 

motor units and coherence between different motor units. The raw EMG signals typically had longer 233 

EnHLs than their phase-randomized surrogates (Fig. 3), so there is information in the phase properties of 234 

the EMG. The EnHL for the phase-randomized signals correlated with the mean frequency of the EMG 235 

and is of similar time-scale to the period of that mean frequency. This suggests that the fundamental 236 

presence of voltage fluctuations (from the motor unit action potentials that make up the raw EMG) that 237 

occur at distinct times and with distinct frequency properties, manifest as time-dependent structure to the 238 

phase within that signal. Each motor unit action potential occurs at a distinct time and leaves 239 

characteristic spectral components in the surface EMG signal (16) and these can also be resolved using 240 

time-frequency signal processing techniques such as wavelet analysis (21, 23). The raw EMG had more 241 

persistent structure (longer EnHLs) than the phase-randomized surrogate signals, but these EnHLs no 242 

longer correlated with the mean frequency of the EMGs (Fig. 3B). Thus the additional structure within 243 
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the raw EMG derived from other features that are likely to include variability in the discharge of 244 

individual motor units (24-25), synchronicity between motor units (26) and activation-deactivation burst 245 

duration and duty cycle. This persistent structure and thus information in the raw EMG (Fig. 4) was also 246 

found in the individual muscle EMG intensity envelopes (Fig. 5) and in the multi-muscle co-ordination 247 

patterns (Fig. 6), although the timescale over which structure persisted and the changes in response to 248 

cycling demand differed. The factors that may cause these differences are therefore considered below. 249 

Why does EnHL differ between the EMG signals analysed? 250 

The raw surface EMG signals are the superposition of motor unit action potentials in the 251 

underlying muscle. Frequency information in the raw signal is strongly correlated with EnHL, even 252 

when the EMG is phase-randomized, and this information reflects the time-varying voltage fluctuations 253 

of the constituent motor unit action potentials. The raw EMG signals and the EMG intensities 254 

additionally contain phase-related information seen by their EnHLs being longer than their phase-255 

randomized surrogates. EMG signals are the convolution of the firing statistics and the time-varying 256 

properties of the individual MUAPs, and so additional information in the EnHLs for the EMG intensities 257 

likely derives from the structure and variability in the firing. This structure is related to the discharge of 258 

individual motor units and synchronicity between motor units, both of which vary with activation levels 259 

and the proficiency for doing tasks. Whilst the EnHL for the EMG intensities was related to the burst 260 

durations for the EMG, they were considerably shorter than for those burst durations, and so fluctuations 261 

in the firing statistics are more rapid than each burst of activity. 262 

The EnHL values from the EMG intensities of individual muscles were generally longer than 263 

those for the raw signals, likely reflecting smoothing out some of the time dependent fluctuations in the 264 

raw EMGs when the envelope of the signal is calculated. This means that burst parameters, such as 265 
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duration and duty cycle, may dominate the structure of the EMG intensity signal and indeed ANCOVA 266 

revealed a negative associations between EnHL and duty cycle, and a positive association between 267 

EnHL and burst duration (Table 1); and this is consistent with changes in EnHL that were simulated 268 

across this physiological range (7). It is these changes in burst duration that appear to play the major role 269 

in affecting the EnHL in these EMG intensities. It is of note that the burst durations (177.4 – 526.8 ms) 270 

were an order of magnitude greater than the EnHL values (15.7 – 36.7 ms; Fig. 5), and thus the reason 271 

for the reduced EnHL is probably not limited by the actual burst duration. 272 

In the quadriceps muscles, however, there were longer EnHLs in the raw EMGs than in the EMG 273 

intensities in some cycling conditions. Structure persisted over longer time periods within the raw 274 

signals from these muscles when compared to others (Fig. 4), and this structure must have been related 275 

to time dependent fluctuations in the raw EMGs that were removed when the intensity envelope was 276 

calculated. The significance of these differences is difficult to determine from the data available from 277 

this study, but it is interesting to note that these muscles were the only ones in which significant changes 278 

in EnHL occurred between cycling conditions (greater EnHL associated with increasing torque 279 

conditions). It could be suggested that differences in motor unit (e.g. size, spatial distribution) and 280 

muscle anatomical (e.g. size, fibre pennation angle) features could combine to influence the raw EMG 281 

signals and hence EnHLs. However, similar EnHL values occurred across all muscles for some of the 282 

cycling conditions (e.g. Fig. 4), suggesting that the raw EMG signal properties altered in response to 283 

task demand. Important time-varying differences in the neuromuscular drive across individual muscles 284 

may therefore occur in response to task demands. These may reflect differences in the neuromuscular 285 

control required to elicit different mechanical roles of each muscle over the time course of a task (e.g. 286 

power production, force transfer), the dynamics of which warrants further investigation. 287 
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 No muscle works in isolation, however, and as such it is valuable to consider the amalgamated 288 

responses of multiple muscles to task demand. Here, this was done by combining the intensity traces 289 

into multi-muscle coordination patterns, quantified by their PC loading scores, which resulted in EnHLs 290 

that were shorter than the EnHLs for the individual muscles. This was as expected, because the more 291 

muscles that are amalgamated into coordination patterns the more ways in which those patterns can vary, 292 

or the greater the chance the signal structure will dissipate. The EnHLs for the coordination calculated 293 

from this study are generally longer than those reported by Enders et al. (18), however, the calculated 294 

EnHLs are sensitive to the filter cut-off frequencies used before the sample entropy analysis: in this 295 

study the data were low-pass filtered with a 10 Hz cut-off due to the pedal cadences reaching 140 r.p.m., 296 

as opposed to the Enders et al. (18) study where a 2.5 Hz was used related to the cadence of 90 r.p.m.. 297 

Why does EnHL differ across cycling conditions? 298 

Variability is a ubiquitous and fundamental characteristic of human movement (27), however 299 

variability may decrease with task constraints such as maximizing power output or pedalling velocity. 300 

Previous studies have shown that the dimensionality of muscle coordination patterns reduces for 301 

pedalling at greater power outputs (18, 28), and the variability of the muscle coordination patterns 302 

reduces at high cadences (8).  However, the approaches used in those studies did not consider the 303 

temporal organization of variability that can be studied using the EnHL approach. Specifically, by 304 

analyzing the structure of signals over the time-course of the whole trial EnHL includes consideration of 305 

how one pedal cycle impacts subsequent cycles (i.e. effects of the order of data points across multiple 306 

pedal cycles is conserved in the analysis). The EnHL for the EMG intensities for the quadriceps muscles 307 

increased with power output for the low cadence, with increasing torque conditions. However, the EnHL 308 

for the remaining muscles, and for the increasing cadence conditions, showed general decreases with 309 

both power and cadence (Fig. 5). While the average variability of muscle coordination decreases with 310 
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greater task demand (8, 18, 28), the data presented here suggest that the time dependent structure of 311 

these coordination patterns has greater variability during more challenging movement tasks. The shorter 312 

EnHLs recorded may reflect greater interference, or more frequent adjustments, from the central nervous 313 

system or may suggest that during more challenging tasks the nervous system was more tolerant of time-314 

varying fluctuations in coordination patterns; as has been suggested for postural balance tasks (29-30). 315 

Further assessment of the temporal structure of variation in muscle co-ordination patterns and changes in 316 

response to task demand are therefore warranted. 317 

Previously, the EnHL for muscle coordination patterns has been shown to increase for cycling at 318 

higher power output (18). The muscle coordination patterns were calculated from the time-varying EMG 319 

intensities from seven lower extremity muscles that included three of the quadriceps, and it was found 320 

that the principal coordination pattern for the high-power condition was dominated by signal from the 321 

rectus femoris (18). In our current study the rectus femoris was one of the muscles that showed an 322 

increase in EnHL as crank torque increased (Fig. 5B). However, the coordination patterns determined 323 

here contain signals from 10 muscles, of which the majority did not show increases in EnHL with power 324 

(Fig. 5). Furthermore, due to the large number of different conditions that we tested, we calculated a 325 

common set of principal coordination patterns across all conditions: whilst such patterns are influenced 326 

by the variability in the EMG intensity from the rectus femoris, the other muscles still have substantial 327 

contribution across all principal patterns that are identified (8) and these muscles showed decreasing 328 

EnHL with increased power output. These methodological differences explain the finding in this study 329 

that the EnHL for the muscle coordination patterns did not increase with the increasing power (at a fixed 330 

cadence) conditions.  331 

It is possible that the EnHLs (for both individual muscles and for the coordination between 332 

muscles) would have showed greater increases related to the increased demands of cycling at higher 333 
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power outputs than those tested in this study. It should be noted that the highest power tested in this 334 

study (260 W) is considerably less than the maximum powers that can be achieved by competitive 335 

cyclists (of over 1000 W; (31)) and so may have only been of limited challenge to the cyclists tested. 336 

Additionally, the relative intensities of the cycle conditions were not normalized to the maximum power 337 

achievable by each participant, and so the relative demands of the conditions may also vary between the 338 

cyclists tested. 339 

We therefore conclude that there is structure at all levels of the EMG signals analysed here, with 340 

the persistence of this structure differing between muscles and in response to cycling task demand. 341 

Differences in structure relate to the underlying motor unit recruitment patterns and interacts with the 342 

electromyogram burst parameters. Further work is however required to determine the functional 343 

significance of the changes found here and to improve understanding of neuromuscular control of time 344 

dependent changes in muscle recruitment during dynamic tasks. 345 
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Figures 421 

 422 

Fig. 1. Signal properties. Raw (top row) EMG shown in gray and phase-randomized surrogate (bottom 423 

row) signals shown in black. Time-varying signals (A), power spectra (B) and Argand diagrams 424 

showing the phase relations (C). Note that the power spectra (B) are the same for the raw signal and the 425 

phase-randomized surrogate. However, the signals have different phases (C) resulting in different burst 426 

characteristics as seen in the time-varying signals (A). 427 

  428 
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 429 

Fig.2. EMG intensity (A), burst duration (B) and duty cycle (C) for the different cycling conditions. 430 

Cyclists pedalled at a low crank torque but increasing cadences (dashed lines), and at a low cadence but 431 

increasing torque (solid lines). Each point represents the mean from 84 steady pedal cycles for nine 432 

subjects. 433 

 434 

 435 

Fig. 3. Correlations of the entropic half-life EnHL with the mean frequency of the EMG for the phase-436 

randomized surrogate signals (A), and the raw EMG signals (B). Each point shows the mean ± S.E.M. 437 

calculated across all nine subjects, nine pedal conditions and 3 blocks.  438 

 439 
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 440 

Fig. 4. Entropic half-lives EnHL for the raw EMG signals when cycling at a low crank torque but 441 

increasing cadences (A), and at a low cadence but increasing torque (B). The results of statistical 442 

analysis are shown in Table 1. 443 

 444 

 445 

 446 

Fig. 5. Entropic half-lives EnHL for the EMG intensities when cycling at a low crank torque but 447 

increasing cadences (A), and at a low cadence but increasing torque (B). The results of statistical 448 

analysis are shown in Table 1. 449 

  450 
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 451 

Fig. 6. Entropic half-lives EnHL for the PC loading scores for the muscle coordination when cycling at a 452 

low crank torque but increasing cadences (A), and at a low cadence but increasing torque (B). The 453 

results of statistical analysis are shown in Table 1. 454 


