17 research outputs found

    Transmission spectral properties of clouds for hot Jupiter exoplanets

    Get PDF
    Copyright © ESO, 2015Clouds play an important role in the atmospheres of planetary bodies. It is expected that, like all the planetary bodies in our solar system, exoplanet atmospheres will also have substantial cloud coverage, and evidence is mounting for clouds in a number of hot Jupiters. To better characterise planetary atmospheres, we need to consider the effects these clouds will have on the observed broadband transmission spectra. Here we examine the expected cloud condensate species for hot Jupiter exoplanets and the effects of various grain sizes and distributions on the resulting transmission spectra from the optical to infrared, which can be used as a broad framework when interpreting exoplanet spectra. We note that significant infrared absorption features appear in the computed transmission spectrum, the result of vibrational modes between the key species in each condensate, which can potentially be very constraining. While it may be hard to differentiate between individual condensates in the broad transmission spectra, it may be possible to discern different vibrational bonds, which can distinguish between cloud formation scenarios, such as condensate clouds or photochemically generated species. Vibrational mode features are shown to be prominent when the clouds are composed of small sub-micron sized particles and can be associated with an accompanying optical scattering slope. These infrared features have potential implications for future exoplanetary atmosphere studies conducted with JWST, where such vibrational modes distinguishing condensate species can be probed at longer wavelengths.Science & Technology Facilities Council (STFC)European Union’s Seventh Framework Programme (FP7/2007-2013)/ER

    Transmission spectral properties of clouds for hot Jupiter exoplanets

    Get PDF
    Copyright © ESO, 2015Clouds play an important role in the atmospheres of planetary bodies. It is expected that, like all the planetary bodies in our solar system, exoplanet atmospheres will also have substantial cloud coverage, and evidence is mounting for clouds in a number of hot Jupiters. To better characterise planetary atmospheres, we need to consider the effects these clouds will have on the observed broadband transmission spectra. Here we examine the expected cloud condensate species for hot Jupiter exoplanets and the effects of various grain sizes and distributions on the resulting transmission spectra from the optical to infrared, which can be used as a broad framework when interpreting exoplanet spectra. We note that significant infrared absorption features appear in the computed transmission spectrum, the result of vibrational modes between the key species in each condensate, which can potentially be very constraining. While it may be hard to differentiate between individual condensates in the broad transmission spectra, it may be possible to discern different vibrational bonds, which can distinguish between cloud formation scenarios, such as condensate clouds or photochemically generated species. Vibrational mode features are shown to be prominent when the clouds are composed of small sub-micron sized particles and can be associated with an accompanying optical scattering slope. These infrared features have potential implications for future exoplanetary atmosphere studies conducted with JWST, where such vibrational modes distinguishing condensate species can be probed at longer wavelengths.Science & Technology Facilities Council (STFC)European Union’s Seventh Framework Programme (FP7/2007-2013)/ER

    Detection of H2O and evidence for TiO/VO in an ultra hot exoplanet atmosphere

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this recordWe present a primary transit observation for the ultra hot (Teq 2400 K) gas giant expolanetWASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12{1.64 m wavelength range. The 1.4 m water absorption band is detected at high con dence (5:4 ) in the planetary atmosphere. We also reanalyze ground-based photometric lightcurves taken in the B, r0, and z0 lters. Signi cantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this di erence, and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1:12{1:3 m wavelength range, possibly due to iron hydride absorption. If con rmed, WASP-121b will be the rst exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs, and their presence is likely to have a signi cant e ect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversionThe research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Program (FP7/2007-2013) ERC grant agreement no. 336792

    HST hot Jupiter transmission spectral survey: detection of water in HAT-P-1b from WFC3 near-IR spatial scan observations

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087–1.678 Όm. These time series observations were taken with the newly available spatial-scan mode that increases the duty cycle by nearly a factor of 2, thus improving the resulting photometric precision of the data. We measure a planet-to-star radius ratio of Rp/R* = 0.117 09 ± 0.000 38 in the white light curve with the centre of transit occurring at 245 6114.345 ± 0.000 133 (JD). We achieve S/N levels per exposure of 1840 (0.061 per cent) at a resolution of Δλ = 19.2 nm (R ∌ 70) in the 1.1173–1.6549 Όm spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultant transmission spectrum shows a significant absorption above the 5σ level matching the 1.4 Όm water absorption band. In solar composition models, the water absorption is sensitive to the ∌1 m bar pressure levels at the terminator. The detected absorption agrees with that predicted by a 1000 K isothermal model, as well as with that predicted by a planetary-averaged temperature model.Science & Technology Facilities Council (STFC)Space Telescope Science Institut

    HST hot-Jupiter transmission spectral survey: Evidence for aerosols and lack of TiO in the atmosphere of WASP-12b

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present Hubble Space Telescope (HST) optical transmission spectra of the transiting hot-Jupiter WASP-12b, taken with the Space Telescope Imaging Spectrograph instrument. The resulting spectra cover the range 2900–10 300 Å which we combined with archival Wide Field Camera 3 spectra and Spitzer photometry to cover the full optical to infrared wavelength regions. With high spatial resolution, we are able to resolve WASP-12A's stellar companion in both our images and spectra, revealing that the companion is in fact a close binary M0V pair, with the three stars forming a triple-star configuration. We derive refined physical parameters of the WASP-12 system, including the orbital ephemeris, finding the exoplanet's density is ∌20 per cent lower than previously estimated. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanet's atmosphere, as there are no signs of the molecule's characteristic broad features nor individual bandheads. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broad-band spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze and settling dust profiles. The transmission spectrum follows an effective extinction cross-section with a power law of index α, with the slope of the transmission spectrum constraining the quantity αT = −3528 ± 660 K, where T is the atmospheric temperature. Rayleigh scattering (α = −4) is among the best-fitting models, though requires low terminator temperatures near 900 K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a plausible dust aerosol. The presence of atmospheric aerosols also helps to explain the modestly bright albedo implied by Spitzer observations, as well as the near blackbody nature of the emission spectrum. Ti-bearing condensates on the cooler night-side is the most natural explanation for the overall lack of TiO signatures in WASP-12b, indicating the day/night cold trap is an important effect for very hot Jupiters. These findings indicate that aerosols can play a significant atmospheric role for the entire wide range of hot-Jupiter atmospheres, potentially affecting their overall spectrum and energy balance.NASA, through grants under the HST-GO-12473 programme from the STScISTFC (Science & Technology Facilities Council)French Agence Nationale de la Recherche (ANR), under programme ANR-12-BS05-0012 ‘Exo-Atmos

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    S.-M.T. is supported by the European Research Council advanced grant EXOCONDENSE (no. 740963; principal investigator: R. T. Pierrehumbert). E.K.H.L. is supported by the SNSF Ambizione Fellowship grant (no. 193448). X.Z. is supported by NASA Exoplanet Research grant 80NSSC22K0236. O.V. acknowledges funding from the ANR project ‘EXACT’ (ANR-21-CE49-0008-01), from the Centre National d’Études Spatiales (CNES) and from the CNRS/INSU Programme National de PlanĂ©tologie (PNP). L.D. acknowledges support from the European Union H2020-MSCA-ITN-2109 under grant no. 860470 (CHAMELEON) and the KU Leuven IDN/19/028 grant Escher. This work benefited from the 2022 Exoplanet Summer Program at the Other Worlds Laboratory (OWL) at the University of California, Santa Cruz, a programme financed by the Heising-Simons Foundation. T.D. is an LSSTC Catalyst Fellow. J.K. is an Imperial College Research Fellow. B.V.R. is a 51 Pegasi b Fellow. L.W. is an NHFP Sagan Fellow. A.D.F. is an NSF Graduate Research Fellow.Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 ÎŒm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-ÎŒm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Publisher PDFPeer reviewe
    corecore