2,365 research outputs found

    Functional differential equations arising in cell-growth

    Get PDF
    Non-local differential equations are notoriously difficult to solve. Cell-growth models for population growth of a cohort structured by size, simultaneously growing and dividing, give rise to a class of non-local eigenvalue problems, whose “principal” eigenvalue is the time-constant for growth/decay. These and other novel non-local problems are described and solved in special cases in this paper

    Baroclinic geostrophic adjustment in a rotating circular basin

    Get PDF
    Baroclinic geostrophic adjustment in a rotating circular basin is investigated in a laboratory study. The adjustment process consists of a linear phase before advective and dissipative effects dominate the response for longer time. This work describes in detail the hydrodynamics and energetics of the linear phase of the adjustment process of a two-layer fluid from an initial step height discontinuity in the density interface DeltaH to a final response consisting of both geostrophic and fluctuating components. For a forcing lengthscale r(f) equal to the basin radius R-0, the geostrophic component takes the form of a basin-scale double gyre while the fluctuating component is composed of baroclinic Kelvin and Poincare waves. The Burger number S=R/r(f) (R is the baroclinic Rossby radius of deformation) and the dimensionless forcing amplitude epsilon = DeltaH/H-1 (H-1 is the upper-layer depth) characterize the response of the adjustment process. In particular, comparisons between analytical solutions and laboratory measurements indicate that for time tau: 1 < tau < S-1 (tau is time scaled by the inertial period 2pi/f), the basin-scale double gyre is established, followed by a period where the double gyre is sustained, given by S-1 < tau < 2epsilon(-1) for a moderate forcing and S-1 < tau < tau(D) for a weak forcing (tau(D) is the dimensionless dissipation timescale due to Ekman damping). The analytical solution is used to calculate the energetics of the baroclinic geostrophic adjustment. The results are found to compare well with previous studies with partitioning of energy between the geostrophic and fluctuating components exhibiting a strong dependence on S. Finally, the outcomes of this study are considered in terms of their application to lakes influenced by the rotation of the Earth

    Trends in wintertime climate in the northeastern United States: 1965–2005

    Get PDF
    Humans experience climate variability and climate change primarily through changes in weather at local and regional scales. One of the most effective means to track these changes is through detailed analysis of meteorological data. In this work, monthly and seasonal trends in recent winter climate of the northeastern United States (NE-US) are documented. Snow cover and snowfall are important components of the region\u27s hydrological systems, ecosystems, infrastructure, travel safety, and winter tourism and recreation. Temperature, snowfall, and snow depth data were collected from the merged United States Historical Climate Network (USHCN) and National Climatic Data Center Cooperative Network (COOP) data set for the months of December through March, 1965–2005. Monthly and seasonal time series of snow-covered days (snow depth \u3e2.54 cm) are constructed from daily snow depth data. Spatial coherence analysis is used to address data quality issues with daily snowfall and snow depth data, and to remove stations with nonclimatic influences from the regional analysis. Monthly and seasonal trends in mean, minimum, and maximum temperature, total snowfall, and snow-covered days are evaluated over the period 1965–2005, a period during which global temperature records and regional indicators exhibit a shift to warmer climate conditions. NE-US regional winter mean, minimum, and maximum temperatures are all increasing at a rate ranging from 0.42° to 0.46°C/decade with the greatest warming in all three variables occurring in the coldest months of winter (January and February). The regional average reduction in number of snow-covered days in winter (−8.9 d/decade) is also greatest during the months of January and February. Further analysis with additional regional climate modeling is required to better investigate the causal link between the increases in temperature and reduction in snow cover during the coldest winter months of January and February. In addition, regionally averaged winter snowfall has decreased by about 4.6 cm/decade, with the greatest decreases in snowfall occurring in December and February. These results have important implications for the impacts of regional climate change on the northeastern United States hydrology, natural ecosystems, and economy

    Cryptococcal Meningitis Diagnostics and Screening in the Era of Point-of-Care Laboratory Testing.

    Get PDF
    Over the past ten years, standard diagnostics for cryptococcal meningitis in HIV-infected persons have evolved from culture to India ink to detection of cryptococcal antigen (CrAg), with the recent development and distribution of a point-of-care lateral flow assay. This assay is highly sensitive and specific in cerebrospinal fluid (CSF), but is also sensitive in the blood to detect CrAg prior to meningitis symptoms. CrAg screening of HIV-infected persons in the blood prior to development of fulminant meningitis and preemptive treatment for CrAg-positive persons are recommended by the World Health Organization and many national HIV guidelines. Thus, CrAg testing is occurring more widely, especially in resource-limited laboratory settings. CrAg titer predicts meningitis and death and could be used in the future to customize therapy according to burden of infection

    Development of scenarios for land cover, population density, impervious cover, and conservation in New Hampshire, 2010–2100

    Get PDF
    Future changes in ecosystem services will depend heavily on changes in land cover and land use, which, in turn, are shaped by human activities. Given the challenges of predicting long-term changes in human behaviors and activities, scenarios provide a framework for simulating the long-term consequences of land-cover change on ecosystem function. As input for process-based models of terrestrial and aquatic ecosystem function, we developed scenarios for land cover, population density, and impervious cover for the state of New Hampshire for 2020–2100. Key drivers of change were identified through information gathered from six sources: historical trends, existing plans relating to New Hampshire’s land-cover future, surveys, existing population scenarios, key informant interviews with diverse stakeholders, and input from subject-matter experts. Scenarios were developed in parallel with information gathering, with details added iteratively as new questions emerged. The final scenarios span a continuum from spatially dispersed development with a low value placed on ecosystem services (Backyard Amenities) to concentrated development with a high value placed on ecosystem services (the Community Amenities family). The Community family includes two population scenarios (Large Community and Small Community), to be combined with two scenarios for land cover (Protection of Wildlands and Promotion of Local Food), producing combinations that bring the total number of scenarios to six. Between Backyard Amenities and Community Amenities is a scenario based on linear extrapolations of current trends (Linear Trends). Custom models were used to simulate decadal change in land cover, population density, and impervious cover. We present raster maps and proportion of impervious cover for HUC10 watersheds under each scenario and discuss the trade-offs of our translation and modeling approach within the context of contemporary scenario projects

    Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes

    Get PDF
    Trends and sources of lead (Pb) aerosol pollution in the North Pacific rim of North America from 1850 to 2001 are investigated using a high-resolution (subannual to annual) ice core record recovered from Eclipse Icefield (3017 masl; St. Elias Mountains, Canada). Beginning in the early 1940s, increasing Pb concentration at Eclipse Icefield occurs coevally with anthropogenic Pb deposition in central Greenland, suggesting that North American Pb pollution may have been in part or wholly responsible in both regions. Isotopic ratios (208Pb/207Pb and 206Pb/207Pb) from 1970 to 2001 confirm that a portion of the Pb deposited at Eclipse Icefield is anthropogenic, and that it represents a variable mixture of East Asian (Chinese and Japanese) emissions transported eastward across the Pacific Ocean and a North American component resulting from transient meridional atmospheric flow. Based on comparison with source material Pb isotope ratios, Chinese and North American coal combustion have likely been the primary sources of Eclipse Icefield Pb over the 1970–2001 time period. The Eclipse Icefield Pb isotope composition also implies that the North Pacific mid-troposphere is not directly impacted by transpolar atmospheric flow from Europe. Annually averaged Pb concentrations in the Eclipse Icefield ice core record show no long-term trend during 1970–2001; however, increasing 208Pb/207Pb and decreasing 206Pb/207Pb ratios reflect the progressive East Asian industrialization and increase in Asian pollutant outflow. The post-1970 decrease in North American Pb emissions is likely necessary to explain the Eclipse Icefield Pb concentration time series. When compared with low (lichen) and high (Mt. Logan ice core) elevation Pb data, the Eclipse ice core record suggests a gradual increase in pollutant deposition and stronger trans-Pacific Asian contribution with rising elevation in the mountains of the North Pacific rim

    The University of New Hampshire Engaged Scholars Academy: Instilling in Faculty Principles of Effective Partnership

    Get PDF
    Over the last decade, the University of New Hampshire (UNH) has promoted mutually beneficial partnerships between faculty and community partners vis-à-vis the Engaged Scholars Academy (ESA), a faculty development program aimed at enhancing faculty understanding of the principles of partnership and engaged scholarship. This research seeks to determine whether and how the ESA has impacted faculty-community partnerships around engaged scholarship. Findings suggest that Engaged Scholar Academy participants – as compared to non-participants – have a deeper understanding of the principles of partnership, are more likely to feel their scholarship is enhanced, spend more time with partners, engage their partners throughout the process of inquiry, and focus more on sustaining partnership outcomes

    Modeling the color evolution of luminous red galaxies - improvements with empirical stellar spectra

    Get PDF
    Predicting the colors of Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) has been a long-standing problem. The g,r,i colors of LRGs are inconsistent with stellar population models over the redshift range 0.1<z<0.7. The g-r colors in the models are on average redder than the data while the r-i colors in the models are bluer towards low redshift. Beyond redshift 0.4, the predicted r-i color becomes instead too red, while the predicted g-r agrees with the data. We provide a solution to this problem, through a combination of new astrophysics and a fundamental change to the stellar population modeling. We find that the use of the empirical library of Pickles (1998) instead of theoretical spectra modifies the predicted colors exactly in the way suggested by the data. The reason is a lower flux in the empirical libraries, with respect to the theoretical ones, in the wavelength range 5500-6500 AA. The discrepancy increases with decreasing effective temperature independently of gravity. This result has general implications for a variety of studies from globular clusters to high-redshift galaxies. The astrophysical part of our solution regards the composition of the stellar populations of these massive Luminous Red Galaxies. We find that on top of the previous effect one needs to consider a model in which ~3% of the stellar mass is in old metal-poor stars. Other solutions such as substantial blue Horizontal Branch at high metallicity or young stellar populations can be ruled out by the data. Our new model provides a better fit to the g-r and r-i colors of LRGs and gives new insight into the formation histories of these most massive galaxies. Our model will also improve the k- and evolutionary corrections for LRGs which are critical for fully exploiting present and future galaxy surveys.Comment: Submitted to ApJ Letters. High resolution version available at http://www.maraston.eu/Maraston_etal_2008.pd
    corecore