139 research outputs found

    Spin-orbit-enhanced robustness of supercurrent in graphene/WS2Josephson junctions

    Get PDF
    We demonstrate the enhanced robustness of the supercurrent through graphene-based Josephson junctions in which strong spin-orbit interactions (SOIs) are induced. We compare the persistence of a supercurrent at high out-of-plane magnetic fields between Josephson junctions with graphene on hexagonal boron-nitride and graphene on WS2, where strong SOIs are induced via the proximity effect. We find that in the shortest junctions both systems display signatures of induced superconductivity, characterized by a suppressed differential resistance at a low current, in magnetic fields up to 1 T. In longer junctions, however, only graphene on WS2 exhibits induced superconductivity features in such high magnetic fields, and they even persist up to 7 T. We argue that these robust superconducting signatures arise from quasiballistic edge states stabilized by the strong SOIs induced in graphene by WS2

    In vitro bioactivity of titanium-doped bioglass

    Get PDF
    Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM

    Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4

    Full text link
    Multiferroic materials, which reveal magnetic and electric order, are in the focus of recent solid state research. Especially the simultaneous occurrence of ferroelectricity and ferromagnetism, combined with an intimate coupling of magnetization and polarization via magneto-capacitive effects, could pave the way for a new generation of electronic devices. Here we present measurements on a simple cubic spinel with unusual properties: It shows ferromagnetic order and simultaneously relaxor ferroelectricity, i.e. a ferroelectric cluster state, reached by a smeared-out phase transition, both with sizable ordering temperatures and moments. Close to the ferromagnetic ordering temperature the magneto-capacitive coupling, characterized by a variation of the dielectric constant in an external magnetic field, reaches colossal values of nearly 500%. We attribute the relaxor properties to geometric frustration, which is well known for magnetic moments, but here is found to impede long-range order of the structural degrees of freedom.Comment: 4 pages, 3 figure

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html
    • …
    corecore