106 research outputs found

    New Insights toward the Acute Non-Thyroidal Illness Syndrome

    Get PDF
    The non-thyroidal illness syndrome (NTIS) refers to changes in serum thyroid hormone levels observed in critically ill patients in the absence of hypothalamic–pituitary–thyroid primary dysfunction. Affected individuals have low T3, elevated rT3, and inappropriately normal TSH levels. The pathophysiological mechanisms are poorly understood but the acute and chronic changes in pituitary–thyroid function are probably the consequence of the action of multiple factors. The early phase seems to reflect changes occurring primarily in the peripheral thyroid hormone metabolism, best seen in humans since 80–90% of the circulating T3 are derived from the pro-hormone T4. The conversion of T4 to T3 is catalyzed by type 1 (D1) and type 2 (D2) deiodinases via outer-ring deiodination. In contrast, type 3 deiodinase (D3) catalyzes the inactivation of both T4 and T3. Over the last decades, several studies have attempted to elucidate the mechanisms underlying the changes on circulating thyroid hormones in NTIS. Increased inflammatory cytokines, which occurs in response to virtually any illness, has long been speculated to play a role in derangements of deiodinase expression. On the other hand, oxidative stress due to augmented reactive oxygen species (ROS) generation is characteristic of many diseases that are associated with NTIS. Changes in the intracellular redox state may disrupt deiodinase function by independent mechanisms, which might include depletion of the as yet unidentified endogenous thiol cofactor. Here we aim to present an updated picture of the advances in understanding the mechanisms that result in the fall of thyroid hormone levels in the acute phase of NTIS

    Relationship among low T3 levels, type 3 deiodinase, oxidative stress, and mortality in sepsis and septic shock : defining patient outcomes

    Get PDF
    Low T3 syndrome occurs frequently in patients with sepsis. Type 3 deiodinase (DIO3) is present in immune cells, but there is no description of its presence in patients with sepsis. Here, we aimed to determine the prognostic impact of thyroid hormones levels (TH), measured on ICU admission, on mortality and evolution to chronic critical illness (CCI) and the presence of DIO3 in white cells. We used a prospective cohort study with a follow-up for 28 days or deceased. Low T3 levels at admission were present in 86.5% of the patients. DIO3 was induced by 55% of blood immune cells. The cutoff value of 60 pg/mL for T3 displayed a sensitivity of 81% and specificity of 64% for predicting death, with an odds ratio of 4.89. Lower T3 yielded an area under the receiver operating characteristic curve of 0.76 for mortality and 0.75 for evolution to CCI, thus displaying better performance than commonly used prognostic scores. The high expression of DIO3 in white cells provides a novel mechanism to explain the reduction in T3 levels in sepsis patients. Further, low T3 levels independently predict progression to CCI and mortality within 28 days for sepsis and septic shock patients

    Thyroid Hormones and Testicular Function

    Get PDF
    Os hormônios tireoidianos são essenciais para o crescimento, desenvolvimento e metabolismo. O pró-hormônio tiroxina (T4) é sintetizado e secretado pela glândula tireóide junto com uma pequena quantidade do hormônio ativo, a triiodotironina (T3). A conversão de T4 em T3 ocorre na periferia através da atividade das iodotironinas desiodases tipo 1 e tipo 2. Os efeitos biológicos dos hormônios tireoidianos são mediados pela interação do hormônio metabolicamente ativo (T3) com transportadores de membrana e receptores nucleares, resultando em ativação da transcrição gênica. Classicamente as gônadas eram consideradas refratárias aos hormônios tireoidianos. Estudos recentes, no entanto, têm demonstrado que o hormônio da tireóide desempenha um papel crítico no aparelho reprodutor, não somente durante o período de desenvolvimento, mas também na vida adulta. Neste artigo apresentamos uma revisão sobre o papel desempenhado pelos hormônios tireoidianos sobre a função testicular.Thyroid hormones play an important role in the growth, development, and metabolism of mammalian tissues. The pro-hormone thyroxine (T4) is synthesized and secreted by the thyroid gland together with a small amount of the active hormone, triiodothyronine (T3). The iodothyronine deiodinases types 1 and 2 catalize the peripheral T4 to T3 conversion. To exert its biological effects T3 interact with specific membrane transporters and nuclear receptors, thus activating gene transcription. Classically, male gonads were considered to be unresponsive to thyroid hormones. Recent studies, however, have shown that thyroid hormones have a critical role in the male reproductive system, not only during development, but also in adult life. Hence, we review and discuss the most recent advances in our understanding of thyroid hormone effects in male gonadal function

    Uncovering actions of type 3 deiodinase in the metabolic dysfunction-associated fatty liver disease (MAFLD)

    Get PDF
    Metabolic dysfunction-associated fatty liver disease (MAFLD) has gained worldwide attention as a public health problem. Nonetheless, lack of enough mechanistic knowledge restrains effective treatments. It is known that thyroid hormone triiodothyronine (T3) regulates hepatic lipid metabolism, and mitochondrial function. Liver dysfunction of type 3 deiodinase (D3) contributes to MAFLD, but its role is not fully understood. Objective: To evaluate the role of D3 in the progression of MAFLD in an animal model. Methodology: Male/adult Sprague Dawley rats (n = 20) were allocated to a control group (2.93 kcal/g) and high-fat diet group (4.3 kcal/g). Euthanasia took place on the 28th week. D3 activity and expression, Uncoupling Protein 2 (UCP2) and type 1 deiodinase (D1) expression, oxidative stress status, mitochondrial, Krebs cycle and endoplasmic reticulum homeostasis in liver tissue were measured. Results: We observed an increase in D3 activity/expression (p < 0.001) related to increased thiobarbituric acid reactive substances (TBARS) and carbonyls and diminished reduced glutathione (GSH) in the MAFLD group (p < 0.05). There was a D3-dependent decrease in UCP2 expression (p = 0.01), mitochondrial capacity, respiratory activity with increased endoplasmic reticulum stress in the MAFLD group (p < 0.001). Surprisingly, in an environment with lower T3 levels due to high D3 activity, we observed an augmented alpha-ketoglutarate dehydrogenase (KGDH) and glutamate dehydrogenase (GDH) enzymes activity (p < 0.05). Conclusion: Induced D3, triggered by changes in the REDOX state, decreases T3 availability and hepatic mitochondrial capacity. The Krebs cycle enzymes were altered as well as endoplasmic reticulum stress. Taken together, these results shed new light on the role of D3 metabolism in MAFLD

    Short-term exercise training improves cardiac function associated to a better antioxidant response and lower type 3 iodothyronine deiodinase activity after myocardial infarction

    Get PDF
    Aims: We assessed the effects of a short-term exercise training on cardiac function, oxidative stress markers, and type 3 iodothyronine deiodinase (D3) activity in cardiac tissue of spontaneously hypertensive rats (SHR) following experimental myocardial infarction (MI). Methods: Twenty-four SHR (aged 3 months) were allocated to 4 groups: sham+sedentary, sham+trained, MI+sedentary and MI+trained. MI was performed by permanent ligation of the coronary artery. Exercise training (treadmill) started 96 hours after MI and lasted for 4 weeks (~60% maximum effort, 4x/week and 40 min/day). Cardiac function (echocardiography), thioredoxin reductase (TRx), total carbonyl levels, among other oxidative stress markers and D3 activity were measured. A Generalized Estimating Equation was used, followed by Bonferroni’s test (p<0.05). Results: MI resulted in an increase in left ventricular mass (p = 0.002) with decreased cardiac output (~22.0%, p = 0.047) and decreased ejection fraction (~41%, p = 0.008) as well as an increase in the carbonyl levels (p = 0.001) and D3 activity (~33%, p<0.001). Exercise training resulted in a decrease in left ventricular mass, restored cardiac output (~34%, p = 0.048) and ejection fraction (~20%, p = 0.040), increased TRx (~85%, p = 0.007) and reduced carbonyl levels (p<0.001) and D3 activity (p<0.001). Conclusions: Our short-term exercise training helped reverse the effects of MI on cardiac function. These benefits seem to derive from a more efficient antioxidant response and lower D3 activity in cardiac tissue

    Non-thyroidal illness syndrome predicts outcome in adult critically ill patients : a systematic review and meta-analysis

    Get PDF
    We performed a systematic review and meta-analysis to comprehensively determine the prevalence and the prognostic role of non-thyroidal illness syndrome (NTIS) in critically ill patients. We included studies that assessed thyroid function by measuring the serum thyroid hormone (TH) level and in-hospital mortality in adult septic patients. Reviews, case reports, editorials, letters, animal studies, duplicate studies, and studies with irrelevant populations and inappropriate controls were excluded. A total of 6869 patients from 25 studies were included. The median prevalence rate of NTIS was 58% (IQR 33.2-63.7). In univariate analysis, triiodothyronine (T3) and free T3 (FT3) levels in non-survivors were relatively lower than that of survivors (8 studies for T3; standardized mean difference (SMD) 1.16; 95% CI, 0.41-1.92; I2 = 97%; P < 0.01). Free thyroxine (FT4) levels in non-survivors were also lower than that of survivors (12 studies; SMD 0.54; 95% CI, 0.31-0.78; I2 = 83%; P < 0.01). There were no statistically significant differences in thyrotropin levels between non-survivors and survivors. NTIS was independently associated with increased risk of mortality in critically ill patients (odds ratio (OR) = 2.21, 95% CI, 1.64-2.97, I2 = 65% P < 0.01). The results favor the concept that decreased thyroid function might be associated with a worse outcome in critically ill patients. Hence, the measurement of TH could provide prognostic information on mortality in adult patients admitted to ICU
    corecore