11 research outputs found

    Improvement in nutrient uptake and yield of wheat by combined use of urea and compost

    No full text
    Organic city wastes are recycled to prepare composts with improved physical properties and enriched with nutrientsfor their better utilization. Combined application of composts along with inorganic fertilizers may sustain cropproductivity and soil fertility. Present study was conducted to assess the impact of 3 city waste composts (2 nonenrichedand 1 enriched with 25% N requirement of crop) on the economical utilization of urea in wheat. Generally,fertilizer application along with compost increased the yield, N and P uptake by wheat compared to the fertilizeralone. Performance of the treatments was found in the order: NEC (nitrogen enriched compost) + fertilizer > nonenrichedcompost + fertilizer > fertilizer. The NEC along with lower fertilizer-N rate (75 mg kg-1 soil) was found atpar with that of the highest fertilizer rate (175 mg N kg-1 soil) alone. The results showed that the use of NEC (200mg kg-1 soil) for wheat production could be a useful tool to improve the efficiency of commercial N-fertilizer

    Exploring the Impacts of Genotype-Management-Environment Interactions on Wheat Productivity, Water Use Efficiency, and Nitrogen Use Efficiency under Rainfed Conditions

    No full text
    Wheat production under rainfed conditions is restrained by water scarcity, elevated temperatures, and lower nutrient uptake due to possible drought. The complex genotype, management, and environment (G × M × E) interactions can obstruct the selection of suitable high yielding wheat cultivars and nitrogen (N) management practices prerequisite to ensure food security and environmental sustainability in arid regions. The agronomic traits, water use efficiency (WUE), and N use efficiencies were evaluated under favorable and unfavorable weather conditions to explore the impacts of G × M × E on wheat growth and productivity. The multi-N rate (0, 70, 140, 210, and 280 kg N ha−1) field experiment was conducted under two weather conditions (favorable and unfavorable) using three wheat cultivars (AUR-809, CHK-50, and FSD-2008) in the Pothowar region of Pakistan. The experiments were laid out in randomized complete block design (RCBD), with split plot arrangements having cultivars in the main plot and N levels in the subplot. The results revealed a significant decrease in aboveground biomass, grain yield, crop N-uptake, WUE, and N use efficiency (NUE) by 15%, 22%, 21%, 18%, and 8%, respectively in the unfavorable growing season (2014–2015) as compared to favorable growing season (2013–2014) as a consequence of less rainfall and heat stress during the vegetative and reproductive growth phases, respectively. FSD-2008 showed a significantly higher aboveground biomass, grain yield, crop N-uptake, WUE, and NUE as compared to other wheat cultivars in both years. Besides, N140 appeared as the most suitable dose for wheat cultivars during the favorable growing season. However, any further increase in N application rates beyond N140 showed a non-significant effect on yield and yield components. Conversely, the wheat yield increased significantly up to 74% from N0 to N70 during the unfavorable growing season, and there was no substantial difference between N70–N280. The findings provide opportunities for maximizing yield while avoiding excessive N loss by selecting suitable cultivars and N application rates for rainfed areas of Pothowar Plateau by using meteorological forecasting, amount of summer rainfall, and initial soil moisture content

    Exploring the Impacts of Genotype-Management-Environment Interactions on Wheat Productivity, Water Use Efficiency, and Nitrogen Use Efficiency under Rainfed Conditions

    No full text
    Wheat production under rainfed conditions is restrained by water scarcity, elevated temperatures, and lower nutrient uptake due to possible drought. The complex genotype, management, and environment (G × M × E) interactions can obstruct the selection of suitable high yielding wheat cultivars and nitrogen (N) management practices prerequisite to ensure food security and environmental sustainability in arid regions. The agronomic traits, water use efficiency (WUE), and N use efficiencies were evaluated under favorable and unfavorable weather conditions to explore the impacts of G × M × E on wheat growth and productivity. The multi-N rate (0, 70, 140, 210, and 280 kg N ha−1) field experiment was conducted under two weather conditions (favorable and unfavorable) using three wheat cultivars (AUR-809, CHK-50, and FSD-2008) in the Pothowar region of Pakistan. The experiments were laid out in randomized complete block design (RCBD), with split plot arrangements having cultivars in the main plot and N levels in the subplot. The results revealed a significant decrease in aboveground biomass, grain yield, crop N-uptake, WUE, and N use efficiency (NUE) by 15%, 22%, 21%, 18%, and 8%, respectively in the unfavorable growing season (2014–2015) as compared to favorable growing season (2013–2014) as a consequence of less rainfall and heat stress during the vegetative and reproductive growth phases, respectively. FSD-2008 showed a significantly higher aboveground biomass, grain yield, crop N-uptake, WUE, and NUE as compared to other wheat cultivars in both years. Besides, N140 appeared as the most suitable dose for wheat cultivars during the favorable growing season. However, any further increase in N application rates beyond N140 showed a non-significant effect on yield and yield components. Conversely, the wheat yield increased significantly up to 74% from N0 to N70 during the unfavorable growing season, and there was no substantial difference between N70–N280. The findings provide opportunities for maximizing yield while avoiding excessive N loss by selecting suitable cultivars and N application rates for rainfed areas of Pothowar Plateau by using meteorological forecasting, amount of summer rainfall, and initial soil moisture content

    Phytomanagement of heavy metals in contaminated soils using sunflower : a review

    No full text
    Contamination of soils with heavy metals (HMs) is an important issue due to the contamination of agricultural crops, which are further transferred into the food chain. Phytoremediation is an emerging method of remediating metal-contaminated soils. Sunflower has been widely adopted for phytomanagement of HM-contaminated soils owing to its high biomass production and capacity for metal accumulation. Sunflowers can tolerate the toxic effects of certain HMs through different mechanisms, such as enhancements in antioxidant enzyme activities, deposition in nonactive parts of the plant, and stimulation of osmolytes. Stress caused by HMs affected negatively the seed germination, nutritional status, photosynthesis, and growth of sunflower. However, the responses of sunflowers to this stress vary with cultivar/variety, soil type, metal type, dose, and duration of metal exposure. This review critically summarizes the effects of HMs in sunflowers and examines field-relevant approaches to improve the phytoextraction capability of sunflowers. Proper selection of tolerant cultivars along with agronomic practices may be an effective strategy for the phytomanagement of soils contaminated with HMs

    Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage

    No full text
    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50\ua0μM, alone and/or in combination with 1\ua0mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (HO), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and HO production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage

    Forage Yield and Quality of Sweet Sorghum as Influenced by Sowing Methods and Harvesting Times

    No full text
    Sowing methods and harvesting times are the important management considerations for getting the optimum yield and quality of fodder crops. This study, investigated the influence of sowing methods and harvesting times on the growth, yield and quality of sweet sorghum. Chinese sweet sorghum was grown by broadcast method, 30 cm apart lines and 45 cm apart lines and harvested after 60, 75 and 90 days after sowing, respectively. All the tested sowing patterns and harvesting times considerably affected the growth, yield and quality of sweet sorghum. However, sowing in 30 cm apart rows produced maximum leaves per plant (13.09), fresh forage yield (38.1 t ha-1), dry matter yield (4.85 t ha-1), crude proteins (8.9%), ash contents (11%) and sugar contents (12.8%), respectively. Similarly, harvesting after 90 days of sowing gave highest leaves per plant (14.72), fresh forage yield (45.1 t ha-1), dry matter yield (5.60 t ha-1), ash contents (12.2%) and sugar contents (14.1%), respectively. These results suggested that sowing in 30 cm apart lines and harvesting after 90 days of sowing improved the growth, yield and quality of sweet sorghum under the semiarid region of Faisalabad

    Forage Yield and Quality of Sweet Sorghum as Influenced by Sowing Methods and Harvesting Times

    No full text
    Sowing methods and harvesting times are the important management considerations for getting the optimum yield and quality of fodder crops. This study, investigated the influence of sowing methods and harvesting times on the growth, yield and quality of sweet sorghum. Chinese sweet sorghum was grown by broadcast method, 30 cm apart lines and 45 cm apart lines and harvested after 60, 75 and 90 days after sowing, respectively. All the tested sowing patterns and harvesting times considerably affected the growth, yield and quality of sweet sorghum. However, sowing in 30 cm apart rows produced maximum leaves per plant (13.09), fresh forage yield (38.1 t ha-1), dry matter yield (4.85 t ha-1), crude proteins (8.9%), ash contents (11%) and sugar contents (12.8%), respectively. Similarly, harvesting after 90 days of sowing gave highest leaves per plant (14.72), fresh forage yield (45.1 t ha-1), dry matter yield (5.60 t ha-1), ash contents (12.2%) and sugar contents (14.1%), respectively. These results suggested that sowing in 30 cm apart lines and harvesting after 90 days of sowing improved the growth, yield and quality of sweet sorghum under the semiarid region of Faisalabad
    corecore