318 research outputs found

    Next-generation metrics for monitoring genetic erosion within populations of conservation concern

    Get PDF
    This work was conducted as a part of the Next-generation Genetic Monitoring Working Group at the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville. Emma Carrol was supported by a Marie Slodowska Curie Fellowship, (Behaviour-Connect) funded by the EU Horizon2020 program. MWB was supported by a Royal Society Wolfson research merit award. LW was supported by the University of Idaho. This research was supported in part by NSF awards 1355106 and 1357386 to AES.Genetic erosion is a major threat to biodiversity because it can reduce fitness and ultimately contribute to the extinction of populations. Here, we explore the use of quantitative metrics to detect and monitor genetic erosion. Monitoring systems should not only characterize the mechanisms and drivers of genetic erosion (inbreeding, genetic drift, demographic instability, population fragmentation, introgressive hybridization, selection) but also its consequences (inbreeding and outbreeding depression, emergence of large effect detrimental alleles, maladaptation and loss of adaptability). Technological advances in genomics now allow the production of data the can be measured by new metrics with improved precision, increased efficiency and the potential to discriminate between neutral diversity (shaped mainly by population size and gene-flow) and functional/adaptive diversity (shaped mainly by selection), allowing the assessment of management-relevant genetic markers. The requirements of such studies in terms of sample size and marker density largely depend on the kind of population monitored, the questions to be answered and the metrics employed. We discuss prospects for the integration of this new information and metrics into conservation monitoring programmes.Publisher PDFPeer reviewe

    Hair of the Dog: Obtaining Samples From Coyotes and Wolves Noninvasively

    Get PDF
    Canids can be difficult to detect and their populations difficult to monitor. We tested whether hair samples could be collected from coyotes (Canis latrans) in Texas, USA and gray wolves (C. lupus) in Montana, USA using lure to elicit rubbing behavior at both man-made and natural collection devices. We usedmitochondrial and nuclearDNA to determine whether collected hair samples were from coyote, wolf, or nontarget species. Both coyotes and wolves rubbed on man-made barbed surfaces but coyotes in Texas seldom rubbed on hanging barbed surfaces. Wolves in Montana showed a tendency to rub at stations where natural material collection devices (sticks and debris) were present. Time to detection was relatively short (5 nights and 4 nights for coyotes and wolves, respectively) with nontarget and unknown species comprising approximately 26% of the detections in both locations. Eliciting rubbing behavior from coyotes and wolves using lures has advantages over opportunistic genetic sampling methods (e.g., scat transects) because it elicits a behavior that deposits a hair sample at a fixed sampling location, thereby increasing the efficiency of sampling for these canids. Hair samples from rub stations could be used to provide estimates of abundance, measures of genetic diversity and health, and detection–nondetection data useful for cost-effective population monitoring

    Next-generation metrics for monitoring genetic erosion within populations of conservation concern

    Get PDF
    Genetic erosion is a major threat to biodiversity because it can reduce fitness and ultimately contribute to the extinction of populations. Here, we explore the use of quantitative metrics to detect and monitor genetic erosion. Monitoring systems should not only characterize the mechanisms and drivers of genetic erosion (inbreeding, genetic drift, demographic instability, population fragmentation, introgressive hybridization, selection) but also its consequences (inbreeding and outbreeding depression, emergence of large‐effect detrimental alleles, maladaptation and loss of adaptability). Technological advances in genomics now allow the production of data the can be measured by new metrics with improved precision, increased efficiency and the potential to discriminate between neutral diversity (shaped mainly by population size and gene flow) and functional/adaptive diversity (shaped mainly by selection), allowing the assessment of management‐relevant genetic markers. The requirements of such studies in terms of sample size and marker density largely depend on the kind of population monitored, the questions to be answered and the metrics employed. We discuss prospects for the integration of this new information and metrics into conservation monitoring programmes

    Determination of polar bear (Ursus maritimus) individual genotype and sex based on DNA extracted from paw-prints in snow

    Get PDF
    Polar bears rely upon sea ice to hunt, travel, and reproduce. Declining sea ice extent and duration has led polar bears to be designated as “threatened” (ESA). Population monitoring is vital to polar bear conservation; but recently, poor sea ice has made traditional aircraft-based methods less viable. These methods largely rely upon the capture and handling of polar bears, and have been criticized over animal welfare concerns. Monitoring polar bears via DNA sampling is a promising option. One common method utilizes biopsy darts delivered from a helicopter to collect DNA, a method that faces similar ice associated challenges to those described above. However, epidermal cells shed from the foot pads of a polar bear into its paw-prints in snow are a source of “environmental DNA” (e-DNA) that can be collected non-invasively on the sea ice or on land for potential use in population monitoring. Mitochondrial DNA (mt-DNA) is used to assess whether polar bear DNA is present within a snow sample, and nuclear DNA (n-DNA) can identify individuals and their sex. The goal of this investigation was to assess the viability of using e-DNA collected from paw-prints in the snow to identify individual polar bears and their sex. Snow was sampled from 13 polar bear trails (10 paw-prints per trail) on the sea ice in the Chukchi and Beaufort seas along the North Slope of Alaska. Species verification was based on a mt-DNA PCR fragment analysis test. Identification of individuals was accomplished by amplifying a multiplex of seven n-DNA microsatellite loci, and sex was determined by the amelogenin gene sex ID marker. Six of the 13 bear trails sampled (46%) yielded consensus genotypes for five unique males and one female. To our knowledge, this is the first time that polar bears have been individually identified by genotype and sex using e-DNA collected from snow. This method is non-invasive, could be integrated into genetic mark-recapture sampling designs, and addresses some of the current challenges arising from poor sea ice conditions. It also can involve, engage, and empower Indigenous communities in the Arctic, which are greatly affected by polar bear management decisions

    Wolverine Gene Flow Across a Narrow Climatic Niche

    Get PDF
    Wolverines (Guio guio) are one of the rarest carnivores in the contiguous United States. Effective population sizes in Montana, Idaho, and Wyoming, where most of the wolverines in the contiguous United States exist, were calculated to be 35 (credible limits, 28 52) suggesting low abundance. Landscape features that influence wolverine population substructure and gene flow are largely unknown. Recent work has identified strong associations between areas with persistent spring snow and wolverine presence and range. We tested whether a dispersal model in which wolverines prefer to disperse through areas characterized by persistent spring snow cover produced least-cost paths among all individuals that correlated with genetic distance among individuals. Models simulating large preferences for dispersing within areas characterized by persistent spring snow explained the data better than a model based on Euclidean distance. Partial Mantel tests separating Euclidean distance from spring snow-cover-based effects indicated that Euclidean distance was not significant in describing patterns of genetic distance. Because these models indicated that successful dispersal paths followed areas characterized by spring snow cover, we used these understandings to derive empirically based least-cost corridor maps in the U.S. Rocky Mountains. These corridor maps largely explain previously published population subdivision patterns based on mitochondrial DNA and indicate that natural colonization of the southern Rocky Mountains by wolverines will be difficult but not impossible

    Ares I-X Flight Data Evaluation: Executive Overview

    Get PDF
    NASA's Constellation Program (CxP) successfully launched the Ares I-X flight test vehicle on October 28, 2009. The Ares I-X flight was a developmental flight test to demonstrate that this very large, long, and slender vehicle could be controlled successfully. The flight offered a unique opportunity for early engineering data to influence the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office (APO) established a set of 33 flight evaluation tasks to correlate flight results with prospective design assumptions and models. The flight evaluation tasks used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. Included within these tasks were direct comparisons of flight data with preflight predictions and post-flight assessments utilizing models and processes being applied to design and develop Ares I. The benefits of early development flight testing were made evident by results from these flight evaluation tasks. This overview provides summary information from assessment of the Ares I-X flight test data and represents a small subset of the detailed technical results. The Ares Projects Office published a 1,600-plus-page detailed technical report that documents the full set of results. This detailed report is subject to the International Traffic in Arms Regulations (ITAR) and is available in the Ares Projects Office archives files

    The untapped potential of reptile biodiversity for understanding how and why animals age

    Get PDF
    1.The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex‐specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long‐term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life‐history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology
    • 

    corecore