567 research outputs found

    Electromagnetic waves and bursty electron acceleration: implications from Freja

    No full text
    International audienceDispersive Alfvén wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about 1 keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E and B field fluctuations below 64 Hz and 10 Hz, respectively, (the DC instruments upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energisation of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvénic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfvén waves set up these local field-aligned current regions and, in turn, trigger more electrostatic emissions during certain conditions. In these regions, ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods

    Interactions between seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: A retrospective study in Stockholm, Sweden, 2009-2020

    Get PDF
    The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2.; Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analyzed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020.; Seasonal coronaviruses were detected in 2130 samples (3.9 %) and constituted 8.1 % of all virus detections. OC43 was most commonly detected (28.4 % of detections), followed by NL63 (24.0 %), HKU1 (17.6 %), and 229E (15.3 %). The overall fraction of positive samples was similar between seasons, but at species level there were distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence was relatively constant across age strata, while that of NL63 and HKU1 decreased with age.; Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2

    ELVIS - ELectromagnetic Vector Information Sensor

    Get PDF
    The ELVIS instrument was recently proposed by the authors for the Indian Chandrayaan-1 mission to the Moon and is presently under consideration by the Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is to explore the electromagnetic environment of the moon. ELVIS samples the full three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5 ns. The instrument comprises three orthogonal electric dipole antennas, one magnetic search coil antenna and a four-channel digital sampling system, utilising flexible digital down conversion and filtering together with state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921

    Survey of Saturn Z-mode Emission

    Get PDF
    Because of the role of Z-mode emission in the diffusive scattering and resonant acceleration of electrons, we conduct a survey of intensity in the Saturn inner magnetosphere. Z-mode is primarily observed as “5 kHz” narrowband emission in the lower density regions where the ratio of cyclotron to plasma frequency, fc/fp > 1 to which we limit this study. This occurs at Saturn along the inner edge of the Enceladus torus near the equator and at higher latitudes. We present profiles and parametric fits of intensity as a function of frequency, radius, latitude, and local time. The magnetic field intensity levels are lower than chorus, but the electric field intensities are comparable. We conclude that Z-mode wave-particle interactions may make a significant contribution to electron acceleration in the inner magnetosphere of Saturn, supplementing acceleration produced by chorus emission

    Inflammatory proteins in plasma are associated with severity of Alzheimer's disease.

    Get PDF
    Published onlineComparative StudyResearch Support, Non-U.S. Gov'tThis is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Markers of Alzheimer's disease (AD) are being widely sought with a number of studies suggesting blood measures of inflammatory proteins as putative biomarkers. Here we report findings from a panel of 27 cytokines and related proteins in over 350 subjects with AD, subjects with Mild Cognitive Impairment (MCI) and elderly normal controls where we also have measures of longitudinal change in cognition and baseline neuroimaging measures of atrophy. In this study, we identify five inflammatory proteins associated with evidence of atrophy on MR imaging data particularly in whole brain, ventricular and entorhinal cortex measures. In addition, we observed six analytes that showed significant change (over a period of one year) in people with fast cognitive decline compared to those with intermediate and slow decline. One of these (IL-10) was also associated with brain atrophy in AD. In conclusion, IL-10 was associated with both clinical and imaging evidence of severity of disease and might therefore have potential to act as biomarker of disease progression.National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre and Dementia Biomedical Research Unit at South London and Maudsley NHS Foundation Trust and King’s College LondonEuropean Union of the Sixth Framework progra

    Electron Density Distributions in Saturn's Ionosphere

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere

    First results of electric field and density observations by Cluster EFW based on initial months of operation

    No full text
    International audienceHighlights are presented from studies of the electric field data from various regions along the Cluster orbit. They all point towards a very high coherence for phenomena recorded on four spacecraft that are separated by a few hundred kilometers for structures over the whole range of apparent frequencies from 1 mHz to 9 kHz. This presents completely new opportunities to study spatial-temporal plasma phenomena from the magnetosphere out to the solar wind. A new probe environment was constructed for the CLUSTER electric field experiment that now produces data of unprecedented quality. Determination of plasma flow in the solar wind is an example of the capability of the instrument
    • 

    corecore