398 research outputs found
Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets
Using particle-in-cell simulations, we demonstrate an improvement of the
target normal sheath acceleration (TNSA) of protons in non-periodically
nanostructured targets with micron-scale thickness. Compared to standard flat
foils, an increase in the proton cutoff energy by up to a factor of two is
observed in foils coated with nanocones or perforated with nanoholes. The
latter nano-perforated foils yield the highest enhancement, which we show to be
robust over a broad range of foil thicknesses and hole diameters. The
improvement of TNSA performance results from more efficient hot-electron
generation, caused by a more complex laser-electron interaction geometry and
increased effective interaction area and duration. We show that TNSA is
optimized for a nanohole distribution of relatively low areal density and that
is not required to be periodic, thus relaxing the manufacturing constraints.Comment: 11 pages, 8 figure
Temporal coherence of high-order harmonics
Systematic studies of the temporal coherence properties of high-order harmonic radiation are presented. These complement our previous investigations [Bellini et al., Phys. Rev. Lett. 81, 297 (1998)], where we showed the separation of the far-field pattern of high-order harmonics into two distinct spatial regions with different coherence times. Here we show how the coherence time of the inner and outer regions changes as a function of the harmonic order, the laser intensity, and the focusing conditions. Good agreement with the predictions of the semiclassical model of harmonic generation is obtained. © 1999 The American Physical Society
Temporal coherence of ultrashort high-order harmonic pulses
We have studied the temporal coherence of high-order harmonics (up to the 15th order) produced by focusing 100 fs laser pulses into an argon gas jet. We measure the visibility of the interference fringes, produced when two spatially separated harmonic sources interfere in the far field, as a function of the time delay between the two sources. In general, we find long coherence times, comparable to the expected pulse durations of the harmonics. For some of the harmonics, the interference pattern exhibits two regions, with significantly different coherence times. These results are interpreted in terms of different electronic trajectories contributing to harmonic generation. © 1998 American Physical Society
Hollow microspheres as targets for staged laser-driven proton acceleration
A coated hollow core microsphere is introduced as a novel target in ultra-intense laser-matter interaction experiments. In particular, it facilitates staged laser-driven proton acceleration by combining conventional target normal sheath acceleration (TNSA), power recycling of hot laterally spreading electrons and staging in a very simple and cheap target geometry. During TNSA of protons from one area of the sphere surface, laterally spreading hot electrons form a charge wave. Due to the spherical geometry, this wave refocuses on the opposite side of the sphere, where an opening has been laser micromachined. This leads to a strong transient charge separation field being set up there, which can post-accelerate those TNSA protons passing through the hole at the right time. Experimentally, the feasibility of using such targets is demonstrated. A redistribution is encountered in the experimental proton energy spectra, as predicted by particle-in-cell simulations and attributed to transient fields set up by oscillating currents on the sphere surface
Study of electron acceleration and X-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators
Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-rayradiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10 21 ph/s/mm 2 / mrad 2 /0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beamdistribution to map the acceleration process; the number of betatron oscillations performed by theelectrons was inferred from the correlation between measured X-ray fluence and beam charge. A studyof the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.Fil: Ju, L.. Universite de Paris Xi; Francia;Fil: Svensson, K.. Lund University; SueciaFil: Ferrari, Hugo Emilio. ComisiĂłn Nacional de EnergĂa AtĂłmica. Gerencia del Area de InvestigaciĂłn y Aplicaciones No Nucleares. Gerencia de FĂsica (centro AtĂłmico Bariloche); Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Döpp, A.. Universite de Paris Xi; Francia;Fil: Cassou, K.. Universite de Paris Xi; Francia;Fil: Genoud, G.. Lund University; Suecia;Fil: Wojda, F.. Lund University; Suecia;Fil: Burza, M.. Lund University; Suecia;Fil: Persson, A.. Lund University; Suecia;Fil: Lundh, O.. Lund University; Suecia;Fil: Wahlström, C. G.. Lund University; Suecia;Fil: Cros, B.. Universite de Paris Xi; Francia
XUV digital in-line holography using high-order harmonics
A step towards a successful implementation of timeresolved digital in-line
holography with extreme ultraviolet radiation is presented. Ultrashort XUV
pulses are produced as high-order harmonics of a femtosecond laser and a
Schwarzschild objective is used to focus harmonic radiation at 38 nm and to
produce a strongly divergent reference beam for holographic recording.
Experimental holograms of thin wires are recorded and the objects
reconstructed. Descriptions of the simulation and reconstruction theory and
algorithms are also given. Spatial resolution of few hundreds of nm is
potentially achievable, and micrometer resolution range is demonstrated.Comment: 8 pages, 8 figure
Effects of laser prepulses on laser-induced proton generation
Low-intensity laser prepulses (<10(13) W cm(-2), nanosecond duration) are a major issue in experiments on laser-induced generation of protons, often limiting the performances of proton sources produced by high-intensity lasers (approximate to 10(19) W cm(-2), picosecond or femtosecond duration). Depending on the intensity regime, several effects may be associated with the prepulse, some of which are discussed in this paper: (i) destruction of thin foil targets by the shock generated by the laser prepulse; (ii) creation of preplasma on the target front side affecting laser absorption; (iii) deformation of the target rear side; and (iv) whole displacement of thin foil targets affecting the focusing condition. In particular, we show that under oblique high-intensity irradiation and for low prepulse intensities, the proton beam is directed away from the target normal. Deviation is towards the laser forward direction, with an angle that increases with the level and duration of the ASE pedestal. Also, for a given laser pulse, the beam deviation increases with proton energy. The observations are discussed in terms of target normal sheath acceleration, in combination with a laser-controllable shock wave locally deforming the target surface
- …