1,251 research outputs found

    Exponential suppression of thermal conductance using coherent transport and heterostructures

    Full text link
    We consider coherent thermal conductance through multilayer photonic crystal heterostructures, consisting of a series of cascaded non-identical photonic crystals. We show that thermal conductance can be suppressed exponentially with the number of cascaded crystals, due to the mismatch between photonic bands of all crystals in the heterostructure.Comment: 15 pages, 4 figure

    CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing

    Get PDF
    Repressive histone H3 lysine 9 methylation (H3K9me) and its recognition by HP1 proteins are necessary for pericentromeric heterochromatin formation. In Schizosaccharomyces pombe, H3K9me deposition depends on the RNAi pathway. Cryptic loci regulator 4 (Clr4), the only known H3K9 methyltransferase in this organism, is a subunit of the Clr4 methyltransferase complex (CLRC), whose composition is reminiscent of a CRL4 type cullin-RING ubiquitin ligase (CRL) including its cullin Cul4, the RING-box protein Pip1, the DNA damage binding protein 1 homolog Rik1, and the DCAF-like protein delocalization of Swi6 1 (Dos1). Dos2 and Stc1 have been proposed to be part of the complex but do not bear similarity to canonical ubiquitin ligase components. CLRC is an active E3 ligase in vitro, and this activity is necessary for heterochromatin assembly in vivo. The similarity between CLRC and the CRLs suggests that the WD repeat protein Dos1 will act to mediate target recognition and substrate specificity for CLRC. Here, we present a pairwise interaction screen that confirms a CRL4-like subunit arrangement and further identifies Dos2 as a central component of the complex and recruiter of Stc1. We determined the crystal structure of the Dos1 WD repeat domain, revealing an eight-bladed beta-propeller fold. Functional mapping of the putative target-binding surface of Dos1 identifies key residues required for heterochromatic silencing, consistent with Dos1's role as the specificity factor for the E3 ubiquitin ligase

    SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer

    Get PDF
    The balloon-borne LSPE mission is optimized to measure the linear polarization of the Cosmic Microwave Background at large angular scales. The Short Wavelength Instrument for the Polarization Explorer (SWIPE) is composed of 3 arrays of multi-mode bolometers cooled at 0.3K, with optical components and filters cryogenically cooled below 4K to reduce the background on the detectors. Polarimetry is achieved by means of large rotating half-wave plates and wire-grid polarizers in front of the arrays. The polarization modulator is the first component of the optical chain, reducing significantly the effect of instrumental polarization. In SWIPE we trade angular resolution for sensitivity. The diameter of the entrance pupil of the refractive telescope is 45 cm, while the field optics is optimized to collect tens of modes for each detector, thus boosting the absorbed power. This approach results in a FWHM resolution of 1.8, 1.5, 1.2 degrees at 95, 145, 245 GHz respectively. The expected performance of the three channels is limited by photon noise, resulting in a final sensitivity around 0.1-0.2 uK per beam, for a 13 days survey covering 25% of the sky.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Improved KL->pi e nu Form Factor and Phase Space Integral with Reduced Model Uncertainty

    Full text link
    Using the published KTeV sample of 2 million KL-> pi e nu decays and a new form factor expansion with a rigorous bound on higher order terms, we present a new determination of the KL->pi e nu form factor and phase space integral. Compared to the previous KTeV result, the uncertainty in the new form factor expansion is negligible and results in an overall uncertainty in the phase space integral (IKe) that is a factor of two smaller: IKe = 0.15392 +- 0.00048 \.Comment: 3 pages, 2 figures, submitted to PRD Rapid Communicatio

    Simultaneous automatic scoring and co-registration of hormone receptors in tumour areas in whole slide images of breast cancer tissue slides

    Get PDF
    Aims: Automation of downstream analysis may offer many potential benefits to routine histopathology. One area of interest for automation is in the scoring of multiple immunohistochemical markers in order to predict the patient's response to targeted therapies. Automated serial slide analysis of this kind requires robust registration to identify common tissue regions across sections. We present an automated method for co-localised scoring of Estrogen Receptor and Progesterone Receptor (ER/PR) in breast cancer core biopsies using whole slide images. Methods and Results: Regions of tumour in a series of fifty consecutive breast core biopsies were identified by annotation on H&E whole slide images. Sequentially cut immunohistochemical stained sections were scored manually, before being digitally scanned and then exported into JPEG 2000 format. A two-stage registration process was performed to identify the annotated regions of interest in the immunohistochemistry sections, which were then scored using the Allred system. Overall correlation between manual and automated scoring for ER and PR was 0.944 and 0.883 respectively, with 90% of ER and 80% of PR scores within in one point or less of agreement. Conclusions: This proof of principle study indicates slide registration can be used as a basis for automation of the downstream analysis for clinically relevant biomarkers in the majority of cases. The approach is likely to be improved by implantation of safeguarding analysis steps post registration

    The Large-Scale Polarization Explorer (LSPE)

    Full text link
    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the polarized foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Measurements of the Decay KLe+eγK_L \to e^+e^-\gamma

    Full text link
    The E799-II (KTeV) experiment at Fermilab has collected 83262 KLe+eγK_L \to e^+e^-\gamma events above a background of 79 events. We measure a decay width, normalized to the KLπ0π0πD0K_L \to \pi^0\pi^0\pi^0_D (\pi^0 \to \gamma\gamma, \pi^0 to \gamma\gamma, \pi^0_D \to e^+e^-\gamma) decay width, of Γ(\Gamma(K_L \to e^+e^-\gamma)/Γ(KLπ0π0πD0)=(1.3302±0.0046stat±0.0102syst)×103)/\Gamma(K_L \to \pi^0\pi^0\pi^0_D) = (1.3302 \pm 0.0046_{stat} \pm 0.0102_{syst}) \times 10^{-3}. We also measure parameters of two KLγγK_L \gamma^{\ast}\gamma form factor models. In the Bergstrom, Masso, and Singer (BMS) parametrization, we find \caks = -0.517 \pm 0.030_{stat} \pm 0.022_{syst}. We separately fit for the first parameter of the D'Ambrosio, Isidori, and Portoles (DIP) model and find \adip = -1.729 \pm 0.043_{stat} \pm 0.028_{syst}.Comment: 5 pages, 3 figures, submitted to PR
    corecore