40 research outputs found

    Response to comments on "magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain"

    Get PDF
    We reported on a neural progenitor cell biomarker, a lipid-based metabolite enriched in these cells, which we detected using spectroscopy both in vitro and in vivo, and singular value decomposition–based signal processing. The study provided an outline of our computational methodology. Herein, we report more extensively on the method of spectrum analysis used, demonstrating the specificity of our findings

    MR Elastography demonstrates reduced white matter shear stiffness in early-onset hydrocephalus

    Get PDF
    INTRODUCTION: Hydrocephalus that develops early in life is often accompanied by developmental delays, headaches and other neurological deficits, which may be associated with changes in brain shear stiffness. However, noninvasive approaches to measuring stiffness are limited. Magnetic Resonance Elastography (MRE) of the brain is a relatively new noninvasive imaging method that provides quantitative measures of brain tissue stiffness. Herein, we aimed to use MRE to assess brain stiffness in hydrocephalus patients compared to healthy controls, and to assess its associations with ventricular size, as well as demographic, shunt-related and clinical outcome measures. METHODS: MRE was collected at two imaging sites in 39 hydrocephalus patients and 33 healthy controls, along with demographic, shunt-related, and clinical outcome measures including headache and quality of life indices. Brain stiffness was quantified for whole brain, global white matter (WM), and lobar WM stiffness. Group differences in brain stiffness between patients and controls were compared using two-sample t-tests and multivariable linear regression to adjust for age, sex, and ventricular volume. Among patients, multivariable linear or logistic regression was used to assess which factors (age, sex, ventricular volume, age at first shunt, number of shunt revisions) were associated with brain stiffness and whether brain stiffness predicts clinical outcomes (quality of life, headache and depression). RESULTS: Brain stiffness was significantly reduced in patients compared to controls, both unadjusted (p ≤ 0.002) and adjusted (p ≤ 0.03) for covariates. Among hydrocephalic patients, lower stiffness was associated with older age in temporal and parietal WM and whole brain (WB) (beta (SE): -7.6 (2.5), p = 0.004; -9.5 (2.2), p = 0.0002; -3.7 (1.8), p = 0.046), being female in global and frontal WM and WB (beta (SE): -75.6 (25.5), p = 0.01; -66.0 (32.4), p = 0.05; -73.2 (25.3), p = 0.01), larger ventricular volume in global, and occipital WM (beta (SE): -11.5 (3.4), p = 0.002; -18.9 (5.4), p = 0.0014). Lower brain stiffness also predicted worse quality of life and a higher likelihood of depression, controlling for all other factors. CONCLUSIONS: Brain stiffness is reduced in hydrocephalus patients compared to healthy controls, and is associated with clinically-relevant functional outcome measures. MRE may emerge as a clinically-relevant biomarker to assess the neuropathological effects of hydrocephalus and shunting, and may be useful in evaluating the effects of therapeutic alternatives, or as a supplement, of shunting

    Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain

    Get PDF
    The identification of neural stem and progenitor cells (NPCs) by in vivo brain imaging could have important implications for diagnostic, prognostic, and therapeutic purposes. We describe a metabolic biomarker for the detection and quantification of NPCs in the human brain in vivo. We used proton nuclear magnetic resonance spectroscopy to identify and characterize a biomarker in which NPCs are enriched and demonstrated its use as a reference for monitoring neurogenesis. To detect low concentrations of NPCs in vivo, we developed a signal processing method that enabled the use of magnetic resonance spectroscopy for the analysis of the NPC biomarker in both the rodent brain and the hippocampus of live humans. Our findings thus open the possibility of investigating the role of NPCs and neurogenesis in a wide variety of human brain disorders

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    Metabolomics of neural progenitor cells: a novel approach to biomarker discovery

    No full text
    Finding biomarkers of human neurological diseases is one of the most pressing goals of modern medicine. Most neurological disorders are recognized too late because of the lack of biomarkers that can identify early pathological processes in the living brain. Late diagnosis leads to late therapy and poor prognosis. Therefore, during the past decade, a major endeavor of clinical investigations in neurology has been the search for diagnostic and prognostic biomarkers of brain disease. Recently, a new field of metabolomics has emerged, aiming to investigate metabolites within the cell/tissue/ organism as possible biomarkers. Similarly to other "omics" fields, metabolomics offers substantial information about the status of the organism at a given time point. However, metabolomics also provides functional insight into the biochemical status of a tissue, which results from the environmental effects on its genome background. Recently, we have adopted metabolomics techniques to develop an approach that combines both in vitro analysis of cellular samples and in vivo analysis of the mammalian brain. Using proton magnetic resonance spectroscopy, we have discovered a metabolic biomarker of neural stem/progenitor cells (NPCs) that allows the analysis of these cells in the live human brain. We have developed signal-processing algorithms that can detect metabolites present at very low concentration in the live human brain and can indicate possible pathways impaired in specific diseases. Herein, we present our strategy for both cellular and systems metabolomics, based on an integrative processing of the spectroscopy data that uses analytical tools from both metabolomic and spectroscopy fields. As an example of biomarker discovery using our approach, we present new data and discuss our previous findings on the NPC biomarker. Our studies link systems and cellular neuroscience through the functions of specific metabolites. Therefore, they provide a functional insight into the brain, which might eventually lead to discoveries of clinically useful biomarkers of the disease
    corecore