1,972 research outputs found

    Whole Plant Faba Bean Siage as a Component of Growing Steer Diets

    Get PDF
    Whole plant faba bean silage was compared to corn-alfalfa silage as a roughage source in 30% roughage growing steer diets. When the proportion of faba bean silage was increased from 0 to 10, 20 and 30%, respectively, daily feed intake, average daily gain and feed conversion of the steers were 18.32, 18.38, 18.23, 19.13 Ib per head; 3.66, 3.42, 3.39, 3.57 Ib per head; and 5.01, 5.38, 5.37 and 5.36, respectively. Substitution of faba bean silage for corn-alfalfa silage in a 30% forage diet had no significant (Pc.05) effect on feed intake, weight gain and feed efficiency for growing steers

    Program transformation landscapes for automated program modification using Gin

    Get PDF
    Automated program modification underlies two successful research areas — genetic improvement and program repair. Under the generate-and-validate strategy, automated program modification transforms a program, then validates the result against a test suite. Much work has focused on the search space of application of single fine-grained operators — COPY, DELETE, REPLACE, and SWAP at both line and statement granularity. This work explores the limits of this strategy. We scale up existing findings an order of magnitude from small corpora to 10 real-world Java programs comprising up to 500k LoC. We decisively show that the grammar-specificity of statement granular edits pays off: its pass rate triples that of line edits and uses 10% less computational resources. We confirm previous findings that DELETE is the most effective operator for creating test-suite equivalent program variants. We go farther than prior work by exploring the limits of DELETE ’s effectiveness by exhaustively applying it. We show this strategy is too costly in practice to be used to search for improved software variants. We further find that pass rates drop from 12–34% for single statement edits to 2–6% for 5-edit sequences, which implies that further progress will need human-inspired operators that target specific faults or improvements. A program is amenable to automated modification to the extent to which automatically editing it is likely to produce test-suite passing variants. We are the first to systematically search for a code measure that correlates with a program’s amenability to automated modification. We found no strong correlations, leaving the question open

    Binding Energy of Charged Excitons in ZnSe-based Quantum Wells

    Full text link
    Excitons and charged excitons (trions) are investigated in ZnSe-based quantum well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of magneto-optical spectroscopy. Binding energies of negatively () and positively (X+) charged excitons are measured as functions of quantum well width, free carrier density and in external magnetic fields up to 47 T. The binding energy of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well width from 190 to 29 A. The binding energies of X+ are about 25% smaller than the binding energy in the same structures. The magnetic field behavior of and X+ binding energies differ qualitatively. With growing magnetic field strength, increases its binding energy by 35-150%, while for X+ it decreases by 25%. Zeeman spin splittings and oscillator strengths of excitons and trions are measured and discussed

    Excitation and decay of projectile-like fragments formed in dissipative peripheral collisions at intermediate energies

    Full text link
    Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg. Calorimetric analysis of the charged particles observed in coincidence with the PLF reveals that the excitation of the primary PLF is strongly related to its velocity damping. Furthermore, for a given V_PLF*, its excitation is not related to its size, Z_PLF*. For the largest velocity damping, the excitation energy attained is large, approximately commensurate with a system at the limiting temperatureComment: 5 pages, 6 figure

    A software reliability model based on a geometric sequence of failure rates

    Get PDF
    Software reliability models are an important tool in quality management and release planning. There is a large number of different models that often exhibit strengths in different areas. This paper proposes a model that is based on a geometric sequence (or progression) of the failure rates of faults. This property of the failure process was observed in practice at Siemens among others and led to the development of the proposed model. It is described in detail and evaluated using standard criteria. Most importantly, the model performs constantly well over several projects in terms of its predictive validity

    Formation and control of electron molecules in artificial atoms: Impurity and magnetic-field effects

    Full text link
    Interelectron interactions and correlations in quantum dots can lead to spontaneous symmetry breaking of the self-consistent mean field resulting in formation of Wigner molecules. With the use of spin-and-space unrestricted Hartree-Fock (sS-UHF) calculations, such symmetry breaking is discussed for field-free conditions, as well as under the influence of an external magnetic field. Using as paradigms impurity-doped (as well as the limiting case of clean) two-electron quantum dots (which are analogs to helium-like atoms), it is shown that the interplay between the interelectron repulsion and the electronic zero-point kinetic energy leads, for a broad range of impurity parameters, to formation of a singlet ground-state electron molecule, reminiscent of the molecular picture of doubly-excited helium. Comparative analysis of the conditional probability distributions for the sS-UHF and the exact solutions for the ground state of two interacting electrons in a clean parabolic quantum dot reveals that both of them describe formation of an electron molecule with similar characteristics. The self-consistent field associated with the triplet excited state of the two-electron quantum dot (clean as well as impurity-doped) exhibits symmetry breaking of the Jahn-Teller type, similar to that underlying formation of nonspherical open-shell nuclei and metal clusters. Furthermore, impurity and/or magnetic-field effects can be used to achieve controlled manipulation of the formation and pinning of the discrete orientations of the Wigner molecules. Impurity effects are futher illustrated for the case of a quantum dot with more than two electrons.Comment: Latex/Revtex, 10 pages with 4 gif figures. Small changes to explain the difference between Wigner and Jahn-Teller electron molecules. A complete version of the paper with high quality figures inside the text is available at http://shale.physics.gatech.edu/~costas/qdhelium.html For related papers, see http://www.prism.gatech.edu/~ph274c

    Classe de Mathématiques, réalité et communication

    Get PDF
    This study focuses on an inquiry-based teaching experience in mathematics, with 5th grade students in which we have established a strong connection with reality and intensified student’s ability to communicate, while promoting problem solving and mathematical reasoning. Mathematics lessons are organized into four phases: (i) Launching the task for students; (ii) Development of the task; (iii) Discussion of the task; and (iv) Systematization of mathematical learning. To prepare task discussion, the teacher implements a “gallery of tasks” through which students have their first contact with their colleague’s resolutions: they can ask questions and make comments in the presented sheets. This article presents the results of a lesson on percentages, in which students worked on the task entitled “Discount at Bit- @ - Byte”. The analysis of this task and the results of similar tasks of reality made throughout the school year shows that the inquiry-based teaching allows improvements in mathematics, namely learning concepts and capabilities such as reasoning, communication and problem solving

    Neutrino Interferometry In Curved Spacetime

    Get PDF
    Gravitational lensing introduces the possibility of multiple (macroscopic) paths from an astrophysical neutrino source to a detector. Such a multiplicity of paths can allow for quantum mechanical interference to take place that is qualitatively different to neutrino oscillations in flat space. After an illustrative example clarifying some under-appreciated subtleties of the phase calculation, we derive the form of the quantum mechanical phase for a neutrino mass eigenstate propagating non-radially through a Schwarzschild metric. We subsequently determine the form of the interference pattern seen at a detector. We show that the neutrino signal from a supernova could exhibit the interference effects we discuss were it lensed by an object in a suitable mass range. We finally conclude, however, that -- given current neutrino detector technology -- the probability of such lensing occurring for a (neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation -- accepted for publication in Phys.Rev.D. Extra author adde

    Spin fluctuations in nearly magnetic metals from ab-initio dynamical spin susceptibility calculations:application to Pd and Cr95V5

    Full text link
    We describe our theoretical formalism and computational scheme for making ab-initio calculations of the dynamic paramagnetic spin susceptibilities of metals and alloys at finite temperatures. Its basis is Time-Dependent Density Functional Theory within an electronic multiple scattering, imaginary time Green function formalism. Results receive a natural interpretation in terms of overdamped oscillator systems making them suitable for incorporation into spin fluctuation theories. For illustration we apply our method to the nearly ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5. We compare and contrast the spin dynamics of these two metals and in each case identify those fluctuations with relaxation times much longer than typical electronic `hopping times'Comment: 21 pages, 9 figures. To appear in Physical Review B (July 2000
    corecore