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Abstract

Automated program modification underlies two successful research areas — genetic improve-

ment and program repair. Under the generate-and-validate strategy, automated program

modification transforms a program, then validates the result against a test suite. Much work

has focused on the search space of application of single fine-grained operators — copy,

delete, replace, and swap at both line and statement granularity. This work explores the

limits of this strategy. We scale up existing findings an order of magnitude from small cor-

pora to 10 real-world Java programs comprising up to 500k LoC. We decisively show that the

grammar-specificity of statement granular edits pays off: its pass rate triples that of line edits

and uses 10% less computational resources. We confirm previous findings that delete is

the most effective operator for creating test-suite equivalent program variants. We go farther

than prior work by exploring the limits of delete’s effectiveness by exhaustively applying

it. We show this strategy is too costly in practice to be used to search for improved software

variants. We further find that pass rates drop from 12–34% for single statement edits to 2–6%

for 5-edit sequences, which implies that further progress will need human-inspired operators

that target specific faults or improvements. A program is amenable to automated modification

to the extent to which automatically editing it is likely to produce test-suite passing variants.

We are the first to systematically search for a code measure that correlates with a program’s

amenability to automated modification. We found no strong correlations, leaving the question

open.

Keywords Automated program modification · Genetic improvement ·

Automated program repair · Search-based software engineering

1 Introduction

Automating routine program improvements and fixes promises to free software developers to

tackle more challenging tasks. With progress in automated program repair (APR) and genetic
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improvement (GI), this future might be closer than previously thought. APR’s focus is on

automatically fixing software bugs (Gazzola et al. (2019)), while GI uses automated search

to find improved software variants (Petke et al. (2018)). Both fields have vibrant research

communities and enjoy impact both in academia beyond computer science and in industry.

For example, Langdon et al. (2015) and Langdon and Lam (2017) used GI to improve

runtime of large open-source bio-informatics software, with patches being incorporated into

development; while Haraldsson et al. (2017); Marginean et al. (2019) and Kirbas et al. (2021)

incorporated APR techniques into their companies’ software development processes.

Both APR and GI share a key commonality: they automatically create program variants

from existing software. We refer to this shared feature as automated program modification

(APM). Software variants created via APM are represented as a sequence of software edits

applied to an initial program, i.e., patches to existing code.

Notwithstanding APM’s successes, a key challenge remains: how to effectively and effi-

ciently navigate the APM search space (Petke et al. (2019)) and scale up the size of individual

edit sequences to match the size of patches routinely applied by software developers, e.g., to

fix bugs (Zhong and Su (2015)).

A seminal goal of APM is to find operators and search strategies that bring multi-edit

improvements into reach. Further progress hinges on a better understanding of the landscape

of APM program transformation spaces. Landscape studies (Reeves (1999)) seek to charac-

terise a search space, in its entirety, unfiltered. The goal is to look for topological features

that may be exploitable to efficiently and effectively navigate the search space. In our case,

this means that we consider all patches to a working program, including the majority, which

break the program. Our experimental procedure covers an unprecedented scale for an APM

landscape study.

Current practice has focused on the delete, swap, copy, and replace operators (CDRS)

at line and statement granularity, because these operators at these granularities are universal:

they can be combined to produce any valid program, including desirable improved variants.

This universality comes at a cost, however, as they produce a huge number of variants,

and that number grows exponentially in the number of times the operators are applied.

Previous studies (Harrand et al. (2019)) have thus focused on single edits to use testing

resources efficiently under the assumption that the results from considering a single edit

would generalise.

We drop this assumption and advance the state of the art by systematically studying

multi-edit patches up to five edits. We deploy two tactics to scale to five edits. First, we

employ the power of uniform sampling. Second, we restrict edits to hot methods, those

which profiling identifies as frequently used. We turn to the goal of APM to justify this bias.

APM seeks to improve a program; in general, improving a hot method will more substantially

improve a program than improving a cold method. This justification rests on the fidelity of the

probability distribution over a program’s inputs used to identify hot methods. We approximate

this distribution with a program’s test suite. We acknowledge the attendant validity threat of

making this assumption. We are not alone, however, in resorting to it: much of the related

work resorts to it to make progress. Technically, we leverage the genetic improvement tool,

Gin1, to focus on hot methods.

APM research has focused on finding successful variants, not the cost of doing so. To

achieve industrial uptake, APM should now more carefully model and report its costs. With

this in mind, we formalise the cost of APM into its three stages — mutating, compiling, and

testing. Of these, mutation requires choosing an operation, finding where to apply it, and

1 https://github.com/gintool/gin
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then applying it. Surprisingly, mutation’s three-part cost has often been neglected. We hope

that our formalisation encourages standardisation in how APM researchers report the costs

of their techniques.

As usual, we require a test suite and quantify the effectiveness of a patch as the proportion

of tests the program variant produced by its application passes. We systematically study the

APM landscape, asking five research questions: (1) What is the relative effectiveness of the

conventional edit operators: copy, delete, replace and swap? (2) How effective is delete

when used alone? (3) Which is more effective: line or statement granular CDRS edits? (4)

How much does effectiveness drop with the number of edits in a patch? and (5) What is the

correlation between subject’s features and its plasticity — the likelihood that applying APM

to it will be effective?

For the first question, we find that the median single edit pass rates for statement dele-

tions are highest, at 30.2%, while statement swaps are second highest, with 23.6% pass rates

(Section 5.2). This finding ranks delete first, in line with previous findings Le Goues et al.

(2012); Harrand et al. (2019). The effectiveness of delete could be due to test suite inade-

quacy, in which case, if its application is not too expensive, delete might serve as a measure

of (in)adequacy. Prior work has also suggested that delete produces variants that are them-

selves more amenable to APM, i.e. it increases plasticity Harrand et al. (2019)2. In either

case, we wondered if delete’s search space contained rare, jagged regions. With these ideas

in mind, we asked the second question above: “How effective is delete when used alone?”.

To answer it, we are the first to exhaustively explore delete’s space of single applications on

hot methods (those which profiling identifies as frequently used) at both statement and line

granularity. For 10 projects, we found that delete’s search space is smooth. Further, single

statement deletion pass rates reached 82%. More study is needed, but this finding suggests

that uniformly sampling delete applications may effectively measure test suite adequacy or

increase plasticity (Section 5.3).

A seminal question in APM is to find, for an improvement goal, an edit granularity that

produces the richest search space. To reduce the cost of finding edit locations, most research

has centered on two granularities — line and statement. Among these two, we definitively

answer the third question. Line edits produce 1
3 test passing variants of statement edits,

while costing twice as much computational resources on average (Section 5.4). Therefore,

statement granular edits should be preferred.

Most developer patches make multiple edits (Zhong and Su (2015); Callan et al. (2022)).

Although genetic improvement has successfully improved software using CDRS, it typically

uses genetic programming and/or local search (Blot and Petke, 2021) to navigate the space

of CDRS edits. The fourth question essentially asks how sparse are effective modifications in

a multi-edit space? Using systematic random sampling, we conclude that compilation rates

alone reduce by roughly 50% with each additional line edit and by 25% with each additional

statement edit (Section 5.5). This result implies that clever search heuristics are needed to

efficiently and effectively navigate the multi-edit search space. Based on this finding, we argue

that, to better approximate human patches, we either need to devise equivalence classes over

variants to reduce the search space or to sacrifice universal operators that can produce any

patch for less widely applicable operators that make more extensive changes. The resulting

landscapes will necessarily be less general, built for particular problems or improvements,

similar to defect classes (Monperrus, 2014).

2 Harrand et al. (2019) define plasticity as the “intrinsic capability at being changed to another code, while
keeping functional correctness, with respect to a given test suite”

123



Empirical Software Engineering

Finally, we want to know which programs are amenable to APM. This would give devel-

opers guidance about where CDRS-based APM would be most effective or how to adapt a

method to facilitate APM. Unfortunately, none of the code measures we tested show a strong

correlation with test pass rate. Only cyclomatic complexity and normalised def-use show

any correlation with pass rate, and it is weak. Our study, therefore, leaves open the question

of where to best apply APM. To facilitate future work, we provide a list of methods that

we found to be particularly amenable to APM (and those that are not) for future research

(Section 5.6).

To summarise, our key contributions are:

– We formalise the cost of automated program modification (Section 2.2);

– We show that exhaustively applying delete generates a smooth search space, suggest-

ing that uniformly sampling delete applications may measure test suite adequacy and

increase plasticity (Section 5.3).

– We provide conclusive evidence that statement granular edits are more effective than line

(Section 5.4);

– To spur future work, we propose plasticity, the problem of identifying code amenable to

APM, conduct preliminary experiments that show how hard it is, and provide two lists of

methods — those particularly amenable and those particularly resistant to APM (Section

5.6).

All our scripts and data are available in the following repository: https://github.com/

automatedprogrammodification/automatedprogrammodification/.

2 Bedrock ProgramModification Landscapes

The success of automated program modification (APM) rests on finding ways to effectively

search a space of useful program variants. For example, hill-climbing efficiently searches

convex spaces. Navigating this space requires understanding its landscape (Reidys and Stadler

(2002)), which can be defined as follows:

Definition 2.1 (Fitness Landscape (Ochoa et al. (2008))) A landscape is a 3-tuple (S, V , f )

where

1. S is a set of potential solutions or search space,

2. V : S → 2S assigns a set of neighbours to every solution to form a neighbourhood

structure, and

3. f : S → R is a fitness function.

This definition assigns a fitness value to each solution. Usually, the higher the fitness

value, the closer the quality of that solution to optimal. For genetic improvement, solutions

are programs and fitness is a program’s value to the users (which could be expressed as the

number of test cases passed, runtime performance, etc.). Applied to program modification, the

challenge is to define the neighbourhood structure via single-step program transformations

that approximate human modifications in order to devise a universal, domain-independent

fitness function.

When modifying a program, the neighbourhood function V in Definition 2.1 is M , a set

of mutation operators on a program, or program transformations3. An operator m ∈ M has

3 In Martinez and Monperrus (2015)’s terminology, M is a repair model and m ∈ M is a repair action.
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the form l → r : it matches the pattern l in the source and replaces it with r . A pattern that l

matches is a redex. We permit l to mix variables and terminal symbols; this permits a pattern

to use terminals as anchors and its variables to span the symbols between two anchors. This

permits a redex to span arbitrary subsequences of P . An operator’s right hand side r can be

shorter than its l and remove characters or longer and add characters. For us, two solutions

(a.k.a. programs) share a neighbourhood (i.e., an edge connects them) if a single application

of an operator transforms one into the other.

M’s operators can be universal or language-specific and, if language-specific, they can be

only syntax-aware or, additionally, semantics-aware. A syntax-aware deletion operator can

avoid deleting definitions or the header of a loop. A semantics-aware insertion operator can

rename the variables in the text it inserts, either to correctly bind them to in-scope variables

or to avoid name capture. For almost all programming languages, the number of well-formed

programs is vast, but very few of them are valuable to users, e.g., meet a specification. Thus,

the challenge is to define M and an accompanying search procedure that efficiently finds

valuable programs.

Universal operators require no parsing or analysis to find their redexes, and they can, in

principle, produce any interesting improvement, because they define languages that contain

all improved versions of P . Their drawback is that they generate vast, sparse search spaces that

include many variants that fail to improve upon P , let alone those that do not even compile.

Language-specific operators are restricted to the language they target and require parsing, for

syntax-awareness, or static analysis, when semantics-aware. They usually produce variants

that compile and they can greatly reduce search space, because of the constraints on their

redexes. Semantics-aware operators cannot, however, realise all improvements. Due to com-

putational complexity, they must target specific functional or non-functional improvements

and, even for a particular improvement type, they can only fix some subset.

Given these trade-offs, most automated program improvement approaches, have targeted

universal operators — character-granular to produce �∗ or line-granular generating L(lines)

— or weakly syntax-aware operators, notably statement-granular producing L(stmt) (Petke

et al. (2018)). Two key reasons underlie this preference: 1) the search spaces of universal

and weakly syntactic operators contain all functional and non-functional improvements and

2) semantics-aware operators must be tailored to specific improvements. Two subproblems

lurk in the second reason: it is not clear which improvements to target and, having chosen

specific improvements, it is often not clear how to define or tailor effective operators for

them. In the limit, when the improvement is sufficiently unique, no effective operator can be

extracted from the edits that realise the improvement. In short, research to date has preferred

the challenge of trying to efficiently traverse a vast search space to the challenge of designing

bespoke operators. Although some progress has been made in the field of automated program

repair, where template-based approaches have been tried (e.g., Liu et al. (2019); Martinez

and Monperrus (2018)). Much less progress has been made in the field of non-functional

genetic improvement (Petke (2017)).

2.1 Landscape Formation: The Operators Studied

This paper’s focus is on the limits of universal or weakly syntactic operators, so we con-

sider four: copy, delete, replace and swap, at line and statement granularity. To identify

statements, we generate an AST and consider only statement nodes. For a program, let L
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be the set of its lines, S be the set of its statements and its source text be the sequence

p = 〈u1, u2, . . . , un〉, for ui ∈ L ⊕ ui ∈ S. For i, j ∈ [1..n], we have

copy(p, i, j) = 〈. . . , ui , u j , ui+1, . . . , un+1〉

delete(p, i, j) = 〈. . . , ui−1, ui+1, . . . , un−1〉

replace(p, i, j) = 〈. . . , ui−1, u j , ui+1, . . . , un〉

swap(p, i, j) = 〈. . . , ui−1, u j , ui+1, . . . , u j−1, ui , u j+1, . . . , un〉, i < j .

where delete ignores its third parameter.

replace replaces a line or a statement with another one, copied from somewhere else in

the program. swap, as its name implies, swaps the locations of its operands: it can model

micro refactorings and/or optimisations. While GenProg used swap, most recent work in

non-functional optimisation has not. Indeed, Le Goues et al. (2012) observed that replace

is often preferred to swap, because swap has been found to be an order of magnitude less

effective than other operators.

delete and insert are universal primitive operators, able to construct �∗ for any finite

alphabet �. Thus, we would like to include both. delete actually shrinks the variant search

space, but raw, unconstrained insert grows it, making landscape analysis infeasible. Drop-

ping insert altogether produces a stale, artificial landscape: insert is overwhelmingly the

most common operator used to construct code.

To conduct a landscape analysis, such as ours, we therefore need to square the circle

and find an insert operator that defines a feasibly sized yet still realistic search space.

One solution is the bounded insert over the terminals of the grammar of the programming

language of the subject programs, in our case Java. The trouble is the mismatch between these

terminals and the length of tokens: a large enough bound to produce tokens, like keywords

and identifiers, would be prohibitive. To solve the problem of a feasible insert that is realistic

in the sense that it can, in some cases, match insertions developers make, we use copy. This

operator is a form of insert with its input domain restricted to inserting token sequences

(in this study, either lines or statements) that already occur in the subject program. In using

copy, we are in good company; many papers in the APM space use it (Petke et al. (2018))

and it is an application of the plastic surgery hypothesis (Barr et al. (2014)).

2.2 Fitness for Automated ProgramModification

Effective automated program modification requires knowing whether a change indeed

improves a program, i.e., whether it fixes a bug, or preserves functional semantics while

improving a non-functional property (latency, memory consumption, energy efficiency, etc.).

Definitively answering this question requires an oracle that checks the program’s behaviour,

pre and post modification, against its specification. Unfortunately, we usually lack the specifi-

cation, so APM techniques often resort to the program’s test suite, which underapproximates

its specification (Petke et al. (2018)).

Variants that pass all of the tests in a test suite are equivalent under that test suite. The

literature calls such variants neutral (Schulte et al. (2014)). These variants are candidates

for non-functional improvements, unless one is willing to sacrifice functional correctness for

improvements; they form a neutral landscape whose neighborhood may contain functional

fixes not immediately reachable from the subject program (Schulte et al. (2014)). Thus, these

test-passing variants are key to understanding the APM search space. Two measures of this
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set are Schulte et al. (2014)’s software mutational robustness and Harrand et al. (2019)’s

neutral variant rate:

Definition 2.2 (Mutational Robustness, Neutral Variant Rate) Let M(P) = V be the set

of variants generated by applying sequences of mutations from M to the program P . Let

Vc ⊆ V denote all program variants that compile and VT ⊆ Vc denote all program variants

that pass all the tests in P’s test suite T . Then, software mutational robustness (SMR) and

neutral variant rate (NVR) are calculated as follows:

SM R =
|VT |

|V |
(1)

N V R =
|VT |

|Vc|
(2)

SMR shows how large the program search space is for APM under the test suite T . To test

a program, we must successfully compile it: both compilation and testing can be expensive.

NVR shows the proportion of the test passing variants over those that successfully compile;

it is the proportion of variants on which we spent the resources to both compile and test them.

It measures how well mere compilation indicates successfully passing T ’s tests.

For generate and validate approaches, the goal is to maximise |VT | while using as few

resources as possible, and each such resource contributes an objective to our multi-objective

optimisation problem. We will now formalise this. Without loss of generality, we assume a

single resource that is additive in nature, such as time taken or energy consumed, and our

objective is to minimise it. First, given a program P and a set of APM operators M , let

δ = (m1, · · · , mk) be a sequence of k operators from M . Then

v = δ(P) = mk(mk−1(· · · (m1(P))), mi ∈ M ∈ 2O (3)

is one variant generated by applying a sequence δ of k operators to P . Next, given a set of

variants V , which can be obtained by edits from M , and a test suite T , we define the total APM

cost (Equation 4) as the sum of: (1) finding and applying those edits to produce the variants

(Equation 5), (2) the compilation cost (Equation 6), (3) and the testing cost (Equation 7) of

the successfully compiled variants Vc:

$(V ) = $M (V ) + $c(V ) + $T (Vc) (4)

$M (V ) =
∑

v∈V

(

cost(find(δ)) + cost(δ(P))
)

s.t. δ(P) = v (5)

$c(V ) =
∑

v∈V

cost(compile(v)) (6)

$T (Vc) =
∑

vc∈Vc

∑

t∈T

cost(test(vc, t)) (7)

where cost measures a property of interest (e.g., runtime or energy), find denotes a search

procedure, compile(v) denotes compilation of the given variant v, and test(vc, t) denotes

running test t on a successfully compiled variant vc. |V \ VT | is the set of generated variants

that do not pass the test suite, and hence its generation is wasted. Given these costs, the

overarching problem that we are trying to solve in APM is inherently multi-objective:

argmin
Mi ∈2O

$(V ) (8)

123



Empirical Software Engineering

argmax
M j ∈2O

|VT | (9)

subject to Mi = M j .

Here, we aim to find the set of operators that minimise the overall cost (Eq. 8) while

maximising the number of test-suite passing variants, VT (Eq. 9). To demonstrate that Eq. 4

is practical, we instantiate it later in Section 5.4 by empirically solving it when 2O contains

only two sets — one containing line and the other statement granular copy, delete, replace,

and swap operators.

We highlight two points. First, the set of operators M is bounded only by human ingenuity,

so researchers will need to propose different M to explore this problem’s search space.

Second, because the components in $(V ) interact, we cannot decompose the problem. For

example, cost-efficient variant generation (in Eq. 5) may be detrimental if few of its variants

pass the tests (in Eq. 7). Hence, the problem needs a holistic approach.

Lastly, our definition in Eq. 4 can be further adjusted according to the situation at hand.

For example, firstly, if we move from sets to multi-sets in our definitions, then we can

incorporate the cost incurred by finding both duplicates and equivalents, which can happen

in the stochastic search for patches. Secondly, because many costs are stochastic, we could

wrap the right-hand side of all defining equations with E, the expectation operator. In our

formulation above, we follow the common practice in noisy optimisation: this expectation

optimisation is not spelled out, and the true mean is approximated through sampling.

3 Research Questions

In this section we present our research questions. Firstly, we consider the sparsity of bedrock

landscapes induced by applications of our operators at two granularities. APM is expensive.

To reduce that cost, we ask, in closing, whether we can identify lightweight program features

that indicate how amenable a subject program is to APM.

To answer all of the research questions below, except RQ4, we produce a variant as follows:

for each method in each program in our corpus, for each operator, we uniformly choose a

location within the target method at the operator’s granularity, then apply the operator once.

We do this repeatedly to sample the variant space and explore the landscape. Under this

construction, all variants are a single step from the starting program. In RQ4, we apply

operators up to k times. Sections 4.2 4.4 detail these procedures.

Given the lack of specifications, comparing operators in terms of effectiveness is not

easy (Section 2.2). Variants that improve non-functional properties or define a neutral land-

scape (Schulte et al. (2014)) that can serve as the staging ground for a repair (Renzullo

et al. (2018)) are a subset of test-passing variants, so, to the extent to which the test suites

adequately capture the subject programs’ semantics, test-passing variants establish an upper

bound on the number of improving program variants. Thus, we answer RQ1–4 in terms of

the number of test-passing variants.

Operator Effectiveness We aim to systematically explore and characterise the APM search

space. We would like to know: which edit operators are most likely to produce test-passing

variants? Universal, unrestricted edit operators produce an infeasible search space, especially

when those operators can lengthen the subject program. So we instead consider our copy,

delete, replace, and swap operators (Section 2.1) and ask the more concrete question:
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RQ1 How often do single applications of the copy, delete, replace, and swap

(CDRS) operators produce test-passing variants?

The compilation and testing that testing-based APM requires is expensive. A strong sep-

aration in operator performance will point to operators to be dropped or replaced. While

no consensus has emerged about the other three, delete has been repeatedly found to be

the most effective operator at both bug fixing (Le Goues et al. (2012)) and generating test-

passing program variants4 (Harrand et al. (2019)), often leading to efficiency improvements.

Our high-level finding confirms previous results: delete generates the most testing-passing

variants (Section 5.2).

The high pass rate of delete’s variants is puzzling, because human patches tend to add

more than they remove (Zhong and Su 2015, Finding 9). Psychology research has shown that

we humans are biased toward additive over subtractive solutions (Meyvis and Yoon (2021)).

The reason for delete’s pass rate may be that there is more scope for subtractive solutions

in code than we find intuitive; and it may be that software often contains over-engineered

code or broken future-proofing against a future that will never come.

Alternately, delete’s pass rate may just reflect the degree to which the test suite used dur-

ing APM underapproximates the specification. When this underapproximation is intentional,

delete could be an effective way to automatically specialise a program, reducing its CPU

and memory consumption, for that portion of its behaviour that the test suite exercises. When

this underapproximation is unintentional, delete’s test-passing, but incorrect, variants may

help localise and understand a defect. Indeed, Qi et al. (2015) stated

“The Kali [Qi et al.’s deletion-focused APR tool] patches often pinpoint precisely the

exact line or lines of code to change. And they almost always provide insight into the

defective functionality, the cause of the defect, and how to correct the defect.”

Ginelli et al. (2022) did not confirm this claim, but found that delete variants revealed

problems with the test suite. This suggests that delete’s test-passing variants can guide the

search for new tests to add to improve the given test suite. Finally, delete’s pass rate could

be used as a new measure of test suite quality: if delete succeeds too often, the test suite is

inadequate.

Exhaustive Deletion Since it shrinks the search space, delete is well-suited to landscape

analysis. This fact and the pass rate of its variants raises the next research question, which

we are the first to consider exhaustively:

RQ2: What percentage of all variants produced by exhaustively applying delete to

each line or statement in a method passes all tests?

If the cost of computing this percentage is affordable, it can be used to assess test suite

quality. If this percentage is also substantial, then researchers may want to consider applying

delete first to produce its set of test-passing variants, then using that set as the launchpad for

subsequent modifications. Exploiting this set may increase both the effectiveness and effi-

ciency of APM (Harrand et al. (2019)). For instance, Callan et al. (2022) have recently shown

that the most frequently used strategy by Android developers for performance improvements

is redundancy removal. Section 5.3 presents our answer to RQ2.

Operator Granularity The vast majority of APM work has improved programs at the granu-

larity of either lines or statements. An et al. (2018) were the first to compare these granularities

4 In Harrand et al.’s nomenclature, test-passing variants are called “test-suite neutral”, because test-based
fitness does not differentiate them.
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in the context of automated program repair. They found that statement-level changes tend

to be more effective at bug-fixing, but less efficient in terms of overall runtime. Their study

rests on the results of a single tool on a small Python benchmark.

Here, we extensively compare the two granularities over our CDRS landscape on a sub-

stantial corpus of large, popular Java programs (Section 4.1). A trickiness in comparing the

two granularities is that they are not isomorphic. Section 4.5 discusses the specifics of how

our experimental harness handles this issue. Line granular operators generate a set of strings

that subsume any programming language and can even improve non-code properties, like

comments or configuration settings. Statement granular operators are language-specific, since

they still require parsing. Because they are weakly syntactically aware, statement-granular

modifications are more likely to compile than line-granular modifications. Because some

statements contain others, modifying them affects more lines than line granular operators.

To discover which is better, we ask:

RQ3: At which granularity — line or statement — do single applications of the CDRS

operators produce more test-passing variants?

Improving APM’s overall effectiveness depends on making it more efficient. Answering

this research question will shed light on how best to improve its efficiency. Given that localis-

ing where to fix or improve code will always be imprecise, we deem it beneficial to continue

to focus on generic operators, like line-granular ones, and look to either speed or constrain

search or is it better to instead consider operators that can only make some improvements

but create a smaller search space? Section 5.4 reports our findings.

Multiple Edits Most developer-authored patches contain many edits. APM must find a way to

generate such patches if it is to substantially increase the productivity of industrial developers.

Some edit sequences first break, then restore syntactic validity. How often does this occur?

To find out just how sparse the multi-edit search space is, we ask:

RQ4: How often does a sequence of CDRS edits create a test-passing variant?

This question will have different answers, depending on the techniques used to choose

the edit sequence. We expect this question to be seminal, to open a new line of research into

techniques aimed at making multi-edit patches feasible for APM. In this setting, it stands to

reason that grammar-aware operators will be worth their parsing cost and further separate

themselves from universal operators. Indeed, improvement specific semantic operators may

overcome their cost and limited applicability for generating multi-edit patches. It may also

be worthwhile to consider operators that take the sequence so far, including errors, into

account. However, if grammar-oblivious edits recover often enough, it may be more efficient

to continue to use them over devising property-specific operators. Section 5.5 answers this

question and presents our findings.

Suitability for Automated ProgramModification Conducting the search to find test-passing

variants is expensive: computing fitness involves running a program’s test suite. We would

use testing resources more effectively if we could efficiently identify those programs, or parts

of programs, that are more likely to be suitable for APM. Therefore, we ask:

RQ5: Which features predict code’s plasticity, its amenability to APM modulo a test

suite?

To answer this question, there is a plethora of features to consider, ranging from syntactical

through structural to application domains. We focused on the following measures: cyclomatic
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complexity, the count of source statements (excluding comments), the number of possible

execution paths (Nejmeh (1988)), the median and average number of lines between variable

definitions and their subsequent use in the target methods. For a selection of methods, we

correlate these measures and test pass rates to see if any of these measures indicate a program’s

suitability for APM. The consequences of any successful finding would be immense: it would

lower one of the most significant barriers to APM’s industrial adoption: its poor yield on the

computation resources it requires. A negative result, on the other hand, would suggest that

other or new measures are needed. Worst case, it would lend evidence to the hypothesis

that suitablity to APM may fall into the AI-complete category of “I know it when I see

it” (Gewirtz, 1996) properties. Section 5.6 details our findings.

4 Experimental Setup

To answer our research questions we sample parts of the patch space, as defined by the

line and statement CDRS operator sets. We measure the impact of the code changes for a

given patch by running unit tests that execute methods containing the patch, recording the

effect on compilation and unit test behaviour. We ran two experiments: Random Sampling

and Delete Enumeration. The random sampling experiment is designed to generate data to

answer RQ1, RQ3, RQ4, by uniformly sampling the space of CDRS operators, with both

line and statement granularity, with patches of 1–5 edits. The delete enumeration experiment

is designed to generate data to answer RQ2, and provide additional data to answer RQ3.

Post-hoc analysis of the results from the random sampling experiment was carried out to

answer RQ5. Full details of both experiments follow over the remainder of this section.

For all our experiments we use Gin, a dedicated tool for experimentation with genetic

improvement (Brownlee et al. (2019)). Gin is open-source, available on GitHub5. To the best

of our knowledge Gin is the only GI tool that contains an in-built profiler that automatically

determines which test cases cover which methods. Additionally, we wrote a PatchSampler

class to calculate the single-edit search space for our 10 subject programs, and the PatchT-

ester class that we use to calculate self-repairs via recoveries to previous software version

(Section 5.5).

4.1 Corpus

To empirically evaluate the impact of different transformation operators, we apply them to

a corpus of large, widely-used, and actively maintained open-source Java projects hosted

on GitHub. Our core goal is APM landscape analysis. We want to know how amenable

is a program to mutation under the CDRS operators. We do not focus on any particular

improvement objective. The ability to change code automatically brings into reach non-

functional improvements, and also can allow fixing bugs not revealed by (existing) tests.

Therefore, we start with test-passing software. We selected our corpus systematically. We

consider two sets: (a) three hand-curated projects chosen as particularly appropriate for this

experimentation, denoted CSA and (b) a larger set of projects systematically generated by

querying GitHub, denoted CSB . In both cases we had a number of criteria in mind, which

were formalised when generating the second corpus:

5 Gin is available at https://github.com/gintool/gin. We used Gin’s version at commit
e897ad3487eaf21511e740a6828c6c20b168a278.
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Table 1 C SA: Curated projects
selected for experimentation

Project Description Licence LoC

jcodec audio and video codec FreeBSD 136k

mybatis-3 SQL mapper framework Apache 2.0 115k

spatial4j geospatial library Apache 2.0 14k

– Java as the main language.

– Open-source with a permissive licence.

– Test suites with only passing tests.

– Widely used (over 7000 stars on GitHub).

In selecting CSA we also tried to select projects from a variety of application domains; we

manually searched lists of popular Java projects on GitHub, examining individual projects

and selecting those primarily or completely using pure Java, and possessing test suites that

would allow us to extensively evaluate the impact of operator application. The projects chosen

for CSA are given in Table 1.

For CSB 55 projects6 met our criterion, of which we systematically eliminated those

projects that were not primarily code-focused or did not compile and test cleanly on our

experimental platform. A summary of the chosen projects is given in Table 2.

Our experiments target hot methods identified by Gin’s profiler (Section 4.3). These meth-

ods are those that occur most frequently on the stack trace during test runtime, thus we ensure

these are covered by existing test suites. Consequently, these methods are also a good target

for improvement of runtime, although in this work we do not consider any particular improve-

ment objective. To understand the generality of our results, we now consider whether hot

methods are fundamentally different to general methods in our corpus. Table 3 gives method-

level statistics for the hot methods identified by Gin’s profiler, compared to all methods in

the classes containing the hot methods, broken down by project, with figures for all projects

in the last line. We report the number of methods in each category, number of lines and

statements in each method, cyclomatic complexity of each method7, and test coverage8. Test

counts refer to those unit tests found to have called a method by the profiler, so are only given

for the hot methods.

In terms of these measures, hot methods are broadly representative of all methods.

Wilcoxon signed rank tests comparing the values for all methods with those for hot meth-

ods, over all projects, found p < 0.001 for all measures (i.e., line and statement counts,

cyclomatic complexity, and coverage). However, this is largely due to the large sample sizes:

the effect size for all these tests was < 0.2, usually regarded as small (Cohen (1969)), and

equivalent to more than 85% overlap in the distributions. So, hot methods do show a statis-

tically significant difference to methods in general, but the differences in median values for

each measure are still small. Lines and statements per method define the search space at each

granularity: hot methods tend to be fairly small, with medians of 9 lines and 7 statements,

and means of 15.5 and 13.6, per hot method across the whole corpus. However, methods in

general are slightly smaller (medians being 2 less and means being 5 less for both lines and

6 From https://tinyurl.com/github10kstarsjava, accessed on 17 December 2018.
7 Reported by the checkstyle tool, Version 8.36.2 — https://checkstyle.sourceforge.io/config_metrics.html
8 Reported by the Jacoco tool, Version 0.7.9.201702052155 — https://www.jacoco.org/jacoco/
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Table 2 C SB : Projects obtained from systematic search

Project Description Licence LoC

arthas diagnostic tool GNU GPL 3.0 30k

disruptor inter-thread messaging library Apache 2.0 20k

druid database connection pool Apache 2.0 497k

gson (de-)serialization library Apache 2.0 58k

junit4 testing framework Eclipse PL 1.0 50k

mybatis-3 SQL mapper framework Apache 2.0 115k

spark web framework Apache 2.0 15k

statements). Cyclomatic complexity for hot methods (median 2) is higher than for methods

in general (median 1). Instruction and branch coverage are higher for the hot methods, con-

firming that our profiling identified the portions of the code that are most exercised by the test

suite (although interestingly, this high coverage is achieved even though hot methods have a

median of 1 unit test each (Section 6)). For instance, a mean of only 5% of instructions for

arthas are covered by the test suite, while a mean of 79% of instructions in the hot methods

are covered. Although arthas is an outlier in terms of proportion of hot methods in classes

containing hot methods, it was not an outlier in our results (Section 5). Overall, among our

corpus hot methods are slightly smaller, and slightly more complex, than the average method,

with the only substantial difference being that hot methods have much greater test coverage.

4.2 Overall Procedure

Our experiments targeted ten open source applications P; here, we consider each application

as a target program P . Since we study large real-world programs, it would be infeasible to

analyse the whole CDRS edit space. We sample the space as follows:

For each program P we identified hot methods, HP , which are those that use most of the

computation time when the tests are executed. We also identified the set of unit tests THP

that result in a call to each hot method h ∈ HP . This process is detailed in Section 4.3. We

then ran two experiments applying large numbers of edits to the hot methods.

The Random Sampling experiment generated 10 000 patches for each edit granularity

type (line and statement), for 1–5 edits, for each of the 10 projects, making a total of 1 000 000

patches. The Delete Enumeration experiment generated every possible line and statement

delete edit over all the hot methods. Section 4.4 details each experiment’s edit sampling

procedure.

Algorithm 1 presents the overall, shared experimental framework. For each program P ∈

P, after we identify hot methods and their associated tests (line 3, Section 4.3), for each of

our two operator sets M, containing CDRS operators either at the line or statement level (line

4), we sample count patches with k edits each (line 9), applying each patch δ to P (line 10),

compiling it (line 11), and, upon successful compilation, running tests Tδ that call the methods

modified by δ (line 15) on the compiled program variant vc. We record all compilation errors,

as well as all test results (including failure types) for each test t that was run9.

9 We record patch application and patch compilation costs for a sample of 1000 patches in Table 5. All other
parameters are reported for all patches from the two experiments.
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Table 3 Mean μ and median x̃ for various measures over the hot methods identified by Gin’s profiler in each
project, and all methods in the classes containing the hot methods. ‘Tests’ refers to unit tests. ‘Cyc cmp’ is
cyclomatic complexity. Instruction and branch coverage (inst cov & br cov) refer to the % of instructions /
branches covered by the test suite for all / hot methods. The aggregate figures over all projects are taken over
the separate figures for each method in each project

Project All methods in classes containing hot methods
Method Method Lines/ Statements/ Cyc cmp/ Inst Br
count count method method method cov cov

μ x̃ μ x̃ μ x̃ % %

arthas 1638 8 57 12.5 47.13 11.5 15 5 5 7

disruptor 375 159 7.87 5 4.23 2 1.44 1 82 78

druid 18440 8297 10.32 5 8.61 2 2.96 1 75 65

gson 899 504 10.15 6 8.33 4.5 3.45 2 83 79

jcodec 6591 1879 10.97 7 9.25 5 3.29 2 46 34

junit4 1617 1216 6.24 4 4.65 2 1.72 1 86 84

mybatis-3 2501 1255 8.13 4 6.66 3 2.31 1 83 80

opennlp 3694 829 12.41 6 10.62 4 3.59 2 35 37

spark 853 452 6.32 4 4.65 2 1.79 1 71 60

spatial4j 723 435 9 5 7.31 3 2.76 1 79 72

all 37331 15034 9.84 5 8.13 3 2.84 1 77 68.5

hot methods
Method Method Lines/ Statements/ Cyc cmp/ Inst Br Tests/
count count method method method cov cov method

μ x̃ μ x̃ μ x̃ % % μ x̃

arthas 1638 3 135.67 16 112 15 34 7 79 75 1.00 1

disruptor 375 12 11.33 7.5 7 3.5 2.5 1 100 100 1.16 1

druid 18440 534 19.87 9 18.54 8 5.32 2 90 82 2.55 1

gson 899 68 18.41 13 14.76 9 4.65 2 93 90 3.58 2

jcodec 6591 477 16.77 13 14.35 10 4.66 3 94 85 2.51 1

junit4 1617 403 6.67 4 5.1 3 1.82 1 88 90 5.26 3

mybatis-3 2501 323 12.53 9 10.82 8 3.35 2 91 88 5.26 2

opennlp 3694 204 22.26 14 20.15 12 5.74 3 93 86 3.21 1

spark 853 56 14.82 10 12.36 8 4.05 2.5 90 81 4.39 1

spatial4j 723 77 12.3 6 10.26 4 3.61 2 93 91 10.05 2

all 37331 2157 15.51 9 13.59 7 4.17 2 92 85 3.9 1

4.3 Profiling

Any practical APM process will first profile the code to identify the most promising parts

of software for improvement. In the context of automated program repair, for instance, fault

localisation techniques are used for this purpose. In the context of runtime improvement, one

might target code that uses the most time to execute. The code targetted for improvement

will be deemed hot in this work.
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Algorithm 1 Experimental Procedure: hotMethods(P) uses profiling to identify target

methods HP and tests that call these methods THP
; £ denotes cost, e.g., time and

memory usage; ec is a compiler error; Tδ is the set of tests that call methods changed

by δ; and rt is the result of running a test t on a compiled program variant vc — it can

pass, fail or return an error.

Input: P // Corpus

Input: M = {CDRSl , CDRSs } // Operator sets

Input: k = 1..5 // Number of edits per patch

Input: count = 10000 // Patches per number of edits

Input: sample // Sampling procedure, returns a set of patches

Output: R // Set of result tuples

1 R ← ∅

2 forall P ∈ P do

3 〈HP , THP
〉 ← hotMethods(P)

4 forall M ∈ M do

5 R ← R ∪ runTests(sample, P, HP , THP
, M, k, count)

6 return R

7 def runTests(sample, P, HP , THP
, M, k, count) do

8 R ← ∅

9 forall δ ∈ sample(P, HP , M, k, count) do

10 〈v, £δ〉 ← δ(P)

11 〈vc, £c〉 ← compile(v)

12 forall t ∈ Tδ = {t ∈ THP
| δ(h) �= h ∈ HP } do

13 Rt ← {〈t, ec, 0〉}

14 if ec = ∅ then

15 〈rt , £t 〉 ← test(vc, t)

16 Rt ← {〈t, rt , £t 〉}

17 R ← R ∪ {〈P, δ, v, £δ, vc, £c, Rt 〉}

18 return R

For each program P , we use Gin’s profiler (as implemented in its Profiler class) to

determine the set of hot methods HP . In Gin these are the methods that are seen most often

at the top of the stack trace, when the tests are executed. The assumption is that these are the

methods that consume most of the given program’s computational time. Note that, however,

the hot-ness measure can easily be replaced with other measures; thus, one can redirect the

focus to other non-functional properties or even functional ones.

The same hot methods were then targeted in both Random Sampling and Delete Enumer-

ation experiments. Summary statistics for the hot methods identified in each project can be

found in Section 4.1.

4.4 Edit Sampling

Our two experiments use two samplers, which we now detail. Our experiments define locs,

in Eq. 10, to limit the source and target of an operator m ∈ {copy, delete, replace, swap}.

This definition limits copy’s and replace’s source operand to the class containing a hot

method h; it limits swap’s source to only to the code of a hot method itself and limits all
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operators’ targets to the code of a hot method. Note that delete does not have a source, only

a target. The locs returns the set of possible combinations at the correct granularity (line or

statement).

locs(m, h) =
⎧

⎪

⎨

⎪

⎩

source(class(h)) × target(h) if m = copy ∨ m = replace

target(h) if m = delete

source(h) × target(h) if m = swap

(10)

Algorithm 2 shows the sampler used in our Random Sampling experiment. For a given

budget of edit applications given by k, it generates count patches, where it generates each

patch by uniformly choosing a hot method, then the edit operator m, before calling locs

and applying the operator. All edits in a single patch target the same hot method. Gin’s

RandomSampler class implements this sampler. Note that the first loop iteration initialises

δ0 with the original program in Line 5, and all subsequent patches build upon it, i.e. each δ j

represents a patch with j edit operations.

Algorithm 2 picks each of the delete, copy, replace and swap operators with equal

probability. This samples more of delete’s space relative to the other operators, because the

space for delete is only the number of editable locations, rather than the product of two

editable locations as for all other edits. As far as we know, all heuristic-based improvement

frameworks to-date more intensively sample delete’s search space. We follow the same

strategy and leave considerations of equally sampling each operator’s space to future work.

Smigielska et al. (2021) showed that sampling strategy that searches an equal proportion of

each operator’s search space could indeed help find useful patches for the purpose of bug

fixing. This might be due to delete not being as effective at bug fixing yet sampled frequently

using standard sampling strategy. Results might look different for runtime improvement, for

instance. Here we are concerned with the more general idea of how plastic is code under APM,

Algorithm 2 Multi-edit patch sampler. We choose() uniformly at random.

Input: P // Target class

Input: HP // Hot methods in P

Input: M // Operations

Input: k = 5 // Number of edits

Input: count = 10000 // Patches per edit length

1 V ← ∅

2 for i in [1..k] do

3 for count times do

4 h ← choose(HP ) // Choose hot method

5 δ0 ← P // Initial, identity patch

6 for j in [1..i] do

7 m ← choose(M) // Choose operator

8 (l0, l1) ← choose(locs(m, h)) // Choose locations

9 δ j ← m(δ j−1, l0, l1)

10 V ← V ∪ {δi }

11 return V
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leaving considerations of effectiveness of particular operator types for specific improvement

objectives for future work.

The sampler for the Delete Enumeration experiment builds and samples V = {δ1 | h ∈

HP ∧(−, l) ∈ locs(d, h)∧δ1 = d(P, l)}, where d(P, l) denotes deletion of location l in pro-

gram P . For each granularity (line or statement), this procedure visits each location in HP and

creates a patch comprising a single delete edit for that location. Gin’s DeleteEnumerator

class implements this sampler.

4.5 Operator Implementation

The implementation details of edit operations affect the likelihood of producing test-passing

variants, so we summarise them, for both granularities, and note the implications.

Within a given patch it is possible to have the same target location addressed by more

than one operation. Moreover, it is possible to have the target location of an earlier operation

addressed as the source for a later operation. In Gin, consistent substitutions within a patch

are maintained by the following rules: (1) all operations affect only their target location.

The IDs of other code locations are unaffected (so, e.g., deleting line n does not cause line

n + 1 to be relabelled as n); (2) to prevent a later operator wasting effort by nullifying an

earlier one, once a location is changed by a delete, swap or replace operation it cannot

serve as a source for a subsequent operation in the patch, so operations using it as a source

become noOps; (3) copy inserts to a given target location are chained after the target location.

The inserted code cannot be addressed as a source for subsequent operations and cannot be

deleted by subsequent operations; (4) once a location is deleted, subsequent delete, swap and

replace operations to that location in the patch have no effect. However, copy operations

can still target an insertion at this location.

A line can contain multiple statements or none, as when a single statement is formatted

across several lines. More frequently, however, statements contain multiple lines, because

control statements tend to contain statement blocks that, in turn, contain statement lists.

Consider the main event loop of any reactive system or the instruction loop of an interpreter

when these are implemented using a while statement. Denominated in lines, then, statements

tend make more changes than line operators do. For this reason, we consider edits of both

statement and line granularity in our experiments. It is important to note that our definition

of statement is that of JavaParser’s, and thus includes block statement (i.e., lists of smaller

statements wrapped in braces, such as the body of a loop or if structure). This makes

it possible for larger sections of code to be deleted or moved in a single operation, and

both block statements and the statements contained within them can be manipulated by our

edits.

One important implication of this is connected to our implementation for swap, as this

is relevant to our explanation of the results later. We implement swap as a pair of delete-

insert operations. In the case where one of the pair of statements to be swapped is contained

within the other, effectively the swap becomes a delete operation. An illustrative example is

in Figure 1. Here, the swap targeted two statements in JUnit’s TestWatcher class. The first

statement was the whole try...catch block (lines 2–10), and the second was the skipped()

method invocation (line 6). The result was the deletion of most of the method, which still

compiles correctly.
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Fig. 1 Example of a swap edit. The red parts in the original listing (top) are effectively deleted by the edit
that swaps the try..catch block (lines 2-10) with the skipped() method invocation (line 6), producing
the patched listing (bottom)

5 Results

In this section, we detail our computational resources we used, the scale of our experiment,

and the patch filtering we used for RQ1, RQ2, RQ4, and R5, then answer each research

question.

We provide full experimental results, and the scripts required to reproduce those results

using Gin: https://github.com/automatedprogrammodification/automatedprogrammodificati

on/blob/main/replication_package/.

Execution Environment We conduct all experiments on a compute server with four AMD

Opteron 6348 (2.8 GHz) processors (total: 48 physical cores), 128 GB RAM, using Java

1.8.0_192 on CentOS 6.9. Both during profiling and each experimental run, each test case is

run once with a timeout of 10s (Gin’s default). On this machine, our experimental runs took

a little under two weeks of single-core wallclock time. Gin’s Profiler run for all 10 projects

took 48.5 hours. The Random Sampling experiment took 38.2 hours for line and 150.4 hours

for statement edits. The Delete Enumeration experiment took 50.6 hours for all 10 projects.

5.1 Experimental Scale

Our experimental procedure covers an unprecedented scale for an APM landscape study. We

have covered 10 real-world open source projects, and our sampling procedure was designed

to test enough applications of edits across to start making more general conclusions. In

particular, we applied every single possible line and statement delete edit to the hot methods

identified in these projects.

Overall we analyse 1 000 000 randomly sampled sequences of edits, and 33 458 single-

line and 24 396 single-statement delete edits. The largest corpus for an APM study was used

by Harrand et al. (2019), where they analysed 180 207 single-statement edits. Note we are

analysing the search space of test-suite adequate program variants. Arguably, we could have
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Table 4 Search space sizes for
statement and line edits in Gin

Project Single line edits Single statement edits

arthas 526 538 343 642

disruptor 57 272 16 693

druid 38 907 104 46 219 904

gson 1 327 524 903 400

jcodec 6 386 328 4 203 594

junit4 734 594 405 950

mybatis-3 2 761 544 1 738 527

opennlp 2 095 158 1 438 388

spark 226 328 116 515

spatial4j 445 162 273 041

started with the fixed versions of the famous Defects4J10. However, we thought of it as a

dataset designed specifically for the APR community. Instead, we systematically sampled

open source projects to avoid such a bias. Furthermore, the most widely studied, original

version of Defects4J contains programs whose size totals 321kLoc, while here druid alone

contains 497kLoc.

Table 3 contains a summary of the data extracted. The numbers of all possible single line

and single statement edits are presented in Table 4. The data shows that the search space

size for line edits is roughly twice as big as for statement edits, with the exception of druid,

having more possible statement than line edits. Moreover, druid’s search space is much

larger than that of other projects, even though the number of hot methods, although largest,

is not that much bigger than that of jcodec, as seen in Table 3.

Random Sampling The random sampling experiment generated a total of 1 000 000 patches;

10 000 per patch size, sizes 1–5, 2 granularity levels, and 10 projects). For line edits, after

removal of duplicates and identity patches, we were left with 73 301, 97 349, 99 585, 99 847,

and 99 916 patches of 1–5 edits, respectively. Over all line patches, 7731 were identity

patches, and 23 892 were duplicates (1621 were both identity and duplicates). Duplicates

appeared at different rates. There are far fewer possible delete edits, because delete only

has one associated location rather than two. There are also fewer swap edits, because the

two locations are limited to the same hot method rather than one location being drawn from

the whole class. Over all single line edit patches, the number of duplicates removed were

926 copy, 140 31 delete, 956 replace, 6577 swap. For statement edits, after removal

of duplicates and identity patches, we were left with 61 066, 91 959, 97 871, 98 948, and

99 223 patches of 1–5 edits, respectively. In total, we report results for 469 998 (line) and

449 067 (statement) unique random patches, with 1 to 5 edits. Over all line patches, 7731

were identity patches, and 23 892 were duplicates (1621 were both identity and duplicates).

Duplicates appeared at different rates. There are far fewer possible delete edits, because

delete only has one associated location rather than two. There are also fewer swap edits,

because the two locations are limited to the same hot method rather than one location being

drawn from the whole class. We can only easily analyse single edit patches for this because

multi-edit patches can contain a mixture of edit types, but over all single line edit patches,

the number of duplicates removed were 926 copy, 14 031 delete, 6577 replace, 956

swap. For statement edits, after removal of duplicates and identity patches, we were left

10 https://github.com/rjust/defects4j
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with 61 066, 91 959, 97 871, 98 948, and 99 223 patches of 1–5 edits, respectively. Over all

statement patches, 27 502 were identity patches, and 32 028 were duplicates (8597 were both

identity and duplicates). Duplicates also appeared at different rates for statements. Over all

single statement edit patches, the number of duplicates removed were 2118 copy, 15 236

delete, 2001 replace, 8755 swap. In total, we report results for 469 998 (line) and 449 067

(statement) unique random patches, with 1 to 5 edits.

Delete Enumeration In total there were 33 458 and 24 396 single-delete edits for line and

statement types respectively. Interestingly, single delete edits make up less than 1% of the

overall transformation space in our experiments.

Patch Filtering In answering all research questions other than RQ3 and RQ5, we exclude

identity patches, those that do not change the code’s syntax, e.g. replacing line 10 with line

10. Formally, an identity patch is one with an edit sequence δ where P = δ(P), for all

programs P . Such “do nothing” patches are rare. We removed them because they simply

waste resources. Section 5.1 reports how many identity patches we filter. The goal of this

work is to explore the search space of CDRS edit operations. Duplicated patches simply

repeatedly visit the same location in this space, adding no new information, so we report

results on unique patches only.

5.2 Which Edit Operators Maximise Test-PassingVariants?

To determine which edit operators, among copy, delete, replace, swap (CDRS), are most

effective when applied once we analysed the single 73 301 line and 61 066 single statement

edits from the Random Sampling experiment. We calculated the frequency with which each

single edit type still passed all the tests. These rates per operator type vary per project, and so

are presented per project in Fig. 2. delete is by far the most effective single edit operator, with

swap being second-best. This echoes the work by Le Goues et al. (2012) on C programs, where

the delete was found most effective, followed by replace and swap (equally effective),

with copy being least effective. In our case, however, swap was found to be significantly

better than replace. The test pass rates of copy and replace never exceed that of delete

and are generally less than half that of delete at either line or statement granularity.

Now, we are in a position to answer RQ1: “How often do single applications of the copy,

delete, replace, and swap (CDRS) operators produce test-passing variants?”. Under our

sampling scheme (see Section 4.4), we find that:

Fig. 2 The percentage of variants produced by a single application of each edit operation that pass the tests
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Answer to RQ1

The median single edit test pass rates for our edit operators are: delete (line: 16.5% /

statement: 30.2%) > swap (5.6% / 23.6%) > copy (4.6% / 11.6%) > replace (1.7%

/ 9.6%), with a substantial gap (10.9 points / 6.6 points) between delete and swap.

Interestingly, for statement edits, the swap operator turned out to be the next most effective

after delete in our experiments. Figure 2 shows swap having around twice the pass rate of

copy and replace on disruptor, druid, gson, jcodec, and mybatis-3, and exceeds even

delete on junit4 and spatial4j for statement-level edits. Some of this might be explained

by the situation described in Section 4.5, whereby swapping nested statements effectively

deletes the parent statement. In our experiments we found that, among the single-edit patches

sampled, this occurs for around 13% of all swap edits; though the rate varies per project from

8.9% for jcodec to 18.3% for junit4. Assuming the test suite adequately tests the effect of a

swap, swap-produced variants pass when the order of the swapped snippets does not matter

functionally. A deep dive on the target methods for the four projects having the highest

effective statement edit rates for swaps according to Fig. 2 (jcodec, junit4, mybatis-3

and spatial4j) revealed that they also appeared to have a large number of independent

statements. Examples include assignments to local variables, or swapping the content of an

else block to after the closing brace, where the corresponding if finished with a return.

Swapping may, however, provide a non-functional benefit, when the new order better fills the

CPU’s instruction pipeline. For improvement of non-functional properties then, the decision

to drop swap should be revisited.

One big picture goal of this study is to point to ways to make APM more effective. We

asked RQ1 to find which primitive operators are most effective. We pose that constraining

operators or defining new ones might be still more effective. Thus, we investigated the

reasons for test failures for single-edit patches11 to look for any patterns that might suggest

such constraints or new operators. Overall, the most common reasons for test failures for

compilable edits were due to either a java.lang.NullPointerException (5.3% of cases)

or java.lang.AssertionError (5.9% of cases). This finding suggests that introducing a

new operator that makes a simple, conservative null pointer check after applying a CDRS

operator might pay off. Line granular edits can break a language’s syntax in many more ways

than can statement granular edits. Indeed, the compilation rate of statement granular edits

was 26.1%, 16.7 points greater than the 9.4% of line granular ones. It is not surprising then

that statement granular changes exhibited more test failures for compilable variants (14 889

vs5955) and test failure types (72 vs 62) than line granular ones, because the statement

granular sample size is larger.

5.3 delete’s Landscape

delete was the most effective. This is well-known, but still surprising because most developer

commits add more code than they delete. delete also has the smallest search space. Thus,

we can, and are the first to, exhaustively determine the upper bound on its effectiveness in a

nontrivial search space, so we now turn to answering RQ2.

11 Data for all patches from the Random Sampling experiment is visualised here: https://github.com/
automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/
graphs/sample/TestEdits_STATEMENT.png and https://github.com/automatedprogrammodification/
automatedprogrammodification/blob/main/replication_package/results/graphs/sample/TestEdits_LINE.
png
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Fig. 3 Pass rates and neutral variant rates, per project, for single deletes

In total, there were 33 458 and 24 396 single-delete edits for line and statement types

respectively. As an exhaustive search, these already comprised only unique edits. This exper-

iment took just under 53 hours (single-core wallclock time) for all 10 projects: 17 hours and

54 minutes for the line deletions and 35 hours and 1 minute for the statement deletions. While

there were one-fifteenth as many patches as in the random sampling experiment, this time it

was not 15x shorter because many patches failed to compile, which means we can skip to

the next patch without also running the unit tests. The differing compile rates also explain

the shorter run times for line edits (see Figure 4).

We report compilation rates between 15% and 41% for line edits, 31% and 90% for

statement edits, pass rates (SMRs, see Equation 1) between 12% and 38% for line edits,

22% and 82% for statement edits, and neutral variant rates (NVRs, see Equation 2) between

38% and 96% for line edits, and between 37% and 92% for statement edits. Pass and neutral

variant rates for all projects are shown in Figure 3.

We also gathered data for the most common reasons for test failures of single deletes.

In 61% of cases the patch did not compile and in 28% instances the test passed. For

the compiling patches the most common reasons for test failures encountered have been:

java.lang.AssertionError and java.lang.NullPointerException
12. Interestingly,

null-pointer exceptions are also among the most common types of error that programmers

encounter (Coelho et al., 2017; Hassan et al., 2020).

We are now able to answer RQ2. “What percentage of all variants produced by exhaustively

applying delete to each line or statement in a method passes all tests?”:

Answer to RQ2

Pass rates for delete reach 38% and 82% for line and statement granularity, respec-

tively. delete mostly fails at compile time, with 60% of compiling variants passing

all tests for both line and statement deletes.

This finding means that delete is not only successful in bug fixing (Le Goues et al.,

2012), but also has most potential for improvement of non-functional properties. However,

exhaustive enumeration of single-deletes is unlikely to be cost-effective (in terms of wall-

clock time). Perhaps, if the most frequently used methods were only investigated, this could

be used as a first step, before GI with other edit operators is run on such an abridged software.

12 https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/
replication_package/results/graphs/delete/TestSingledeletes_LINE.png and https://github.com/
automatedprogrammodification/automatedprogrammodification/blob/main/replication_package/results/
graphs/delete/TestSingledeletes_STATEMENT.png
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Interestingly, the median pass rates we report here, over exhaustive enumeration, are close to

the pass rate of variants produced by delete during the edit sampling experiment (Section 5.2).

Over all projects, delete’s median pass rate was 17.5% (line) and 34.5% (statement) for

enumeration vs 16.5% and 30.2% for sampling. Section 6 discusses the construct validity

threat that test suite inadequacy poses to the test-passing results reported here.

5.4 Operator Granularity: Line vs Statement

The vast majority of APM work has improved programs at the granularity of either lines or

statements. Here, we compare the two and report our findings over our CDRS landscape. The

previous two experiments — edit sampling and exhaustive delete enumeration — generated

the data we need to answer RQ3. First, we compare the granularities in terms of pass rate,

then their costs. For this experiment, we do not, however, delete duplicate or identity patches,

since we must account for their cost.

For the edit sampling experiment, Fig. 2 shows that pass rates for line edits are lower

than for statement edits: 0.03–10.97% vs 2.32–33.88%, with medians, across all projects,

being 5.07% vs 15.05%. Looking at specific examples for illustration, delete’s pass rate

on arthas is 38% for line and 83% for statement; on disruptor, copy’s is 4% for line

and 11% for statement. Across all edit operators and all projects in our corpus, the rates for

line are around a third that for statement. Compilation rates explain much of this difference:

the median compilation rate for single edits across all projects is 9% for line and 26% for

statement edits.

The delete enumeration experiment tells a similar story. Figure 3 reports compilation

rates of 15%–41% for line and 31%–90% for statement edits. The figure clearly shows that

the rates for line, on any one project, are around half that of statement. Unsurprisingly, line

edits are typically more likely to break syntax and produce uncompilable code than statement

edits. In contrast, the fractions of compiling code that then passes the tests are very close:

38%–96% for line edits and 37%–92% for statement edits, leading to overall pass rates of

12%–38% for line and 15%–41% for statement. The medians over all projects are 5% and

15%, respectively. This suggests that the major difference in the effectiveness of line and

statement granularities is in getting past compilation: if the edits produce code that compiles,

the chances that it will then pass the tests are much the same at either granularity.

Unlike line edits, statement edits are grammatically aware: they cannot introduce imbal-

anced parentheses, for instance. The only syntax error they can introduce is creating empty

statement lists where the grammar requires a nonempty list. Thus, our compilation finding is

perhaps surprising only in that statement granular edits do not outperform line granular ones

by a still greater factor. Both granularities waste resources on failed compilations, although

statement generates fewer. The grammar-awareness of statement granular edits has a price

— parsing. To quantify the cost of constructing VT (i.e., program variants that pass all tests)

under both granularities, we repeated the random sampling experiment with additional time

measurements for 100 edits sampled uniformly from the 10 000 for each project and gran-

ularity. This experiment was much smaller in scale than those described in Sect. 4.2: run

time measurement is notoriously noisy, so to mitigate this as far as possible the timing runs

were performed one at a time on a standalone workstation (Debian OS, two 16-core Intel

Xeon E5-2620 v4 CPUs @2.1 GHz, with 32GB DDR4 RAM), with no graphical desktop

environment and no other CPU-intensive tasks running. The results for this are in Table 5.

Applying line edits requires only dividing source into a list of strings. For statement edits

we must build a parse tree. Over all projects in our random sampling experiment, the median
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Table 5 Median times (ms) and total times (s) for each stage of applying and testing single edits across all
projects (rounded to 3 sig. figs.), for a subsample of 100 edits for each project drawn uniformly from the
Random Sampling results (i.e., 5000 edits in total for each granularity)

Count Median time (ms) Total time (s)
Measure Line Statement Line Statement Line Statement

Apply Edit 5000 5000 0.135 7.937 1.077 98.461

Apply Edit (VT ) 71 334 0.152 6.423 0.012 5.074

Apply Edit (V \ VT ) 4929 4666 0.135 8.049 1.065 93.386

Compile (all) 5000 5000 9.073 31.089 111.116 250.238

Compile (fail) 4844 4134 8.890 29.929 94.261 195.261

Compile (success) 156 866 62.428 37.269 16.854 54.977

Test (all) 156 866 2.889 2.425 448.356 254.058

Test (fail tests) 85 532 3.136 2.650 441.242 229.108

Test (pass tests) 71 334 2.368 1.819 7.114 24.949

cost of applying a single line edit was 0.135ms, considerably faster than the 7.94ms to apply

a single statement edit.

Compilation time varies with success. Syntax errors, for example, terminate compilation

early. In Table 5, the greater gap between successful compilations vs failed compilations for

line vs statement reflects this fact. Indeed, this gap implies that the majority of failures for

line edits are syntactic, whereas grammar-aware statement edits tend to produce errors that

are detected later, such as variables out-of-scope.

Only variants that compile (Vc) can be tested. Ignoring test suite adequacy, only those that

pass the tests (VT ) do not waste effort. The cardinalities of these two sets are compared in

Table 6: it is clear that large numbers of edits are excluded from Vc, then VT in turn, for both

granularities. Across all the edits, including both passing and failing variants, the median

cost of testing was similar for line and statement edits: 2.89ms and 2.43ms. This difference

is much smaller than those for applying edits or compiling the resulting variants. The testing

timings in Table 5 do not necessarily mean that the statement edits produced faster variants

than line edits: while the set of all line edits was applied to the same target methods as the set

of all statement edits, the methods for which these edits compile were different, so different

unit tests would have been run for each.

Table 7 summarises and compares the cost, in seconds, of the two granularities in terms of

Eq. 4, drawn from the 100 edit subsample results in Table 5.
$(V \VT )

$(V )
is wasted computation,

up to test suite adequacy: Line edits wastes 536
560 = 95.7% and statement wastes 517

603 = 85.7%.

Where the two really separate is the cost paid for each test passing variant, i.e. |VT |, we obtain

by normalising against the cardinalities in Table 6. 560
4537 = 123ms for line vs 603

10312 = 58ms

for statement: line edits cost over twice as much for each test passing variant. This factor

Table 6 The cardinalities of the
variants produced, those that
compile, and those that pass the
test suite T , over all 10 000 edits
and the 10 projects

Line Statement

|V | 73301 61066

|Vc| 6855 15946

|VT | 4537 10312
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Table 7 Total costs in seconds over entire sample set; columns 2–5 are Eq. 4

M $M (V ) + $c(V ) + $T (V ) = $(V ); $(V \ VT )

CDRSl 1.08 111 448 560 536

CDRSs 98.5 250 254 603 517

grows with multiple edits. As Section 5.5 shows, the pass rate for line edits drops off much

faster than that for statement.

These results enable us to answer RQ3: “At which granularity — line or statement — do

single applications of the CDRS operators produce more test-passing variants?”. Across all

projects, we find that:

Answer to RQ3

Line edits generate 1
3 as many test passing variants as statement edits, with median

test pass rates over all projects of 5% vs 15%. They waste 10% more computational

resources, and cost twice as much on average.

This finding means that there is little motivation for further focus on edits that ignore

language grammar as line edits do. Rather, it provides strong justification for further research

into more strongly grammar-aware edits. Once the cost of parsing has been paid, more

sophisticated statement edits than CDRS can be applied with little extra computational

effort (Brownlee et al. (2020)). It also justifies investigation into even more expensive,

property-aware, edits that rely on program analysis to select where they should be applied and

produce variants with known properties, like correctness modulo an oracle, thereby obviating

testing.

A caveat on this conclusion concerns non-code modifications, notably in comments.

Unlike line granular edits, statement granular edits cannot make them. Because we lack

tests, let alone test oracles, for non-code modifications, our results here do not account for

this advantage that line granularity has over statement granularity (Zhong and Su 2015,

Finding 1).

Statements form a tree, which can contain nested statements. Thus, a single statement edit

can span multiple lines and make a larger change than a single line edit. Nesting may also

explain the performance of swap discussed in Section 5.2. This fact poses a construct validity

threat to these results, which compare the two granularities in terms of edits. To mitigate this

threat, we now show below that the average conversion of statement edits into line edits is

three and observe that mulitiple line edits perform even worse than a single edit, thereby

establishing that our central finding understates the disadvantage line granular operations

have relative to statement.

To determine the extent of statement nesting, for every statement in a hot method, we

computed its height and fanout. Over all statements the median height is 1 (IQR 2), and

median fanout is 1 (IQR 1). Lest this result be dismissed as uninteresting because it is

dominated by atomic statements, we also report these measures for the block statements of

method bodies, whose median height is 4 (IQR 4), and median fanout is 2 (IQR 3). Because

a method body always contains at least one statement, we found these results for method

bodies to be surprisingly low. Despite both findings, over all statements in our corpus, we

found that a substantial proportion (45.2%) contain at least one nested statement.
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To approximate the granularity of statement edits when converted into lines, we reviewed

all statement edits generated in our random sampling experiment. Across all edits applied in

our experiments, the median number of lines covered by a statement edit was 3. One might

expect that the figure would be lower than this; the average is pulled up by JavaParser’s

definition of statement, which includes blocks (i.e., anything in braces). So, to make the same

magnitude line change as that of a single statement edit using line edits we need three line

edits. The compilation rate for patches of one statement edit is 25% (the first STATEMENT

bar in Fig. 4), while, for patches of three line edits, it is 1.3% (the third LINE bar in Fig. 4).

The point here is that even controlling for the increased number of lines that statement edits

cover compared to line, line still performs worse. Section 5.5 shows that this difference only

increases with the number of edits applied.

Our definition of swap means a child node can replace its parent. This coupled with the

prevalence of statement nesting partially explains why swap has performed so well in our

study: it is acting more like a delete. Over all 449 966 unique non-identity statement patches,

there were 1 434 100 individual edits (recall that we generated patches with 1–5 edits), of

which 377 460 (or 26%) were swap. Of these, 49 415 (13% of all statement swap edits) were

nested child statements replacing an ancestor, thereby implicitly causing many deletions.

Different projects had different rates of such nesting: the lowest was jcodec with 8.9%, and

highest was junit4 with 18.3%.

5.5 Pass Rate of Multi-Edit Patches

We now present the results of applying patches containing 1–5 edits sampled at random from

the search space. Figure 4 gives a head-to-head comparison of compilation rates over all

operators for the two granularities. For each operator type and each edit sequence size, this is

the percentage of patches that resulted in code that compiled successfully. We also considered

the same results broken down by project. There was little variation between projects. The

Fig. 4 % of patches for which the code successfully compiled, for sequences of 1–5 edits
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Fig. 5 % of patches for which the code successfully passed the test cases, normalised to only those for which
the code also compiled, for sequences of 1–5 edits (the Neutral Variant Rate)

trend in compilation rates for each granularity and across the number of edits in each patch

per project appears to be consistent with the overall trend in Figure 413.

There are three major observations from these results. Firstly, similarly to the results

of Langdon and Petke (2017) on non-Java software, we see a remarkable robustness for

single edits: compilation rates of 4%–15% for line and 16%–45% for statement edits per

project. Secondly, there is a power law drop-off in compilation rates per project and per edit

type. Thirdly, as for single edits, compilation rates for line are worse than for statement edits.

With regards to pass rates, aggregated across all projects, the trends are similar to those

for compilation rates in Figure 4. As with compilation rates, the breakdown of pass rates

for each application does not vary substantially from the overall trend across all projects.

However, more variability per project is seen in neutral variant rates, which are shown in

Figure 5. For the majority of patches that compile, the modified code runs without error.

The dropoff in NVR varies per project, with disruptor actually showing an increase from

1 to 2-edit patches. NVRs vary from around 40% to 90% for 1-edit patches, and 20% to

90% for 5-edit patches. Harrand et al. (2019) report 16% to 30% neutral variant rates for

single edits. This is contradictory to our results, which show much higher neutral variant

rates. Interestingly, Langdon and Petke (2017) report high neutral variant rates (up to 89%)

for three non-Java programs. One explanation is that non-object-oriented programs, such as

C, are more amenable to APM mutations. With regards to the difference with Harrand et al.’s

results, they focus on whole Java classes, while we modify methods.

We find that, for up to five edits, the pass rate is quite low (median 0.14% for line and

6.2% for statement granular edits across all projects), confirming the conventional wisdom

about the sparseness of this search space. This suggests that grammar-aware operators are

indeed needed. Interestingly, however, many of the test-passing multi-edit patches contain

evidence of interaction between edits in the form of self-repairs.

We can now answer RQ4, “How often does a sequence of CDRS edits create a test-passing

variant?”:

13 Per project data visualisation is available here: https://github.com/automatedprogrammodification/
automatedprogrammodification/blob/main/replication_package/results/graphs/sample/Compiled_LINE.
png and https://github.com/automatedprogrammodification/automatedprogrammodification/blob/main/
replication_package/results/graphs/sample/Compiled_STATEMENT.png
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Answer to RQ4

Compilation rates are reduced by roughly 50% with each additional line edit; and by

25% for statement edits. Pass rates for multi-edit patches are low and drop with the

number of edits.

In practice, real-world patches usually change multiple lines or statements. Yet we observe

a consistent drop in the number of program variants that pass tests as the number of edits

in a patch increases, using our universal operators at either granularity. We also find that

statement edits outperform line edits, which we attribute to their grammar-awareness. These

results confirm the conventional wisdom at unprecedented scale: the APM search space is

sparse. We believe that future work needs to tackle sparsity straight-on. Two promising paths

are exploring operators that are not universal, but instead tailored to specific defect classes

or improvements, and definition of equivalence classes that permit cheaply, but accurately,

discarding variants without expensive analysis or testing. Bespoke operators can make more

extensive changes to a smaller, more focused set of program locations, similar to the templates

already finding success in the APR community (Liu et al. (2019)). Varfix (Wong et al. (2021))

exemplifies leveraging equivalence classes. Other example approaches leverage information

from existing bug fixes for more effective patch selection (Soto and Goues (2018); Koyuncu

et al. (2020)).

Some edits in a patch interact. For instance, two edits may both be needed for a patch to

fail or pass. An edit interaction is a self-repair when first edit takes a test-passing variant and

produces a test-failing variant and the second edit fixes the first edit’s breakage and produces

a test-passing variant. Recall that, for an edit sequence δ, we write δ(P) to apply δ to the

program P and produce the variant of P under the edits δ (Section 2). For the program P ,

test suite T , and the patch with edit sequence δ ∈ CDRS∗, δ contains a self-repair if there

exists a decomposition of δ, αmbβmrγ = δ, such that mb, mr ∈ CDRS and α(P) passes T ,

αmb(P) fails T , while αmbβmr (P) passes T .

From our data of 919 065 unique patches, we gathered those whose edit sequences had

length two or greater and produce test-passing variants. We focus only on those for which

we have data for intermediate patches (i.e., for patches with n-edits we have data for patches

with (n − 1) − . . . 1−edits). There were 11 259 such patches. In the majority of cases,

each subsequence of edits was a passing one, leaving 2344 cases (775 for line, and 1569

for statement), where although the patch ultimately passed the test suite, it contained edit

sequences that either caused a compilation error or a test failure. 92% of these self-repairs

contain recoveries from a compilation failure. Many of these recoveries are simply due to

edits that undo the change that caused compilation failure leaving the code unchanged: e.g.,

a delete followed by a copy that places an identical piece of code back in the same place.

To determine the nature of self-repairs that are not effectively identity patches, we now

present a deep dive on opennlp. This subject had the highest percentage of self-repairs that

did not simply revert to a previous software version, 98%. Manual investigation of opennlp’s

212 (57 for line, 155 for statement) self-repairing patches revealed that, typically, those line

edits that broke compilation and yet could be repaired were the deletion or insertion of braces,

due to the later addition or removal of another brace. Statement edits that broke compilation

typically copied a variable out of scope, duplicated variable declarations, copied a return

statement creating dead code, or, in one case, copied a case: outside of a switch block.

In the majority of cases, a later edit ‘repaired’ these by deleting the enclosing statement.

In one case, a variable declaration was deleted and a later edit deleted the only reference

to that variable. In another, a long if. . . else block that set the value of a variable had

the content of its else block deleted, breaking compilation because the variable may have
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been uninitialised in later use. A later edit ‘repaired’ this by copying a value assignment to

immediately after the variable’s declaration.

Across all 5-edit patches, self-repairs are infrequent: 1.9% for line and 2.1% for statement.

Considering only test-passing patches, however, self repair average 21% over all patches,

pulled up by the maximum of 31.6% for 5 edit patches. In short, eventually successful patches

are much more likely to self-repair, i.e. to be plastic. As we have shown, computing which

patches are eventually successful is expensive! This self-repair finding, therefore, brings to

the fore the question of whether we can identify plastic code snippets more cheaply than via

testing. Any efficient means of identification would leverage code features, leading us to our

final research question, which we answer next.

5.6 WhichMethods are Plastic, or Amenable to APM?

We conducted an initial exploration of the most plastic methods, and which software metrics

might influence code plasticity. The idea is that these metrics might serve as a proxy so we

might better target edits to specific locations, or avoid costly evaluations of the patched code.

Finding a definitive set of interpretable measures remains an open question. Here we select

a classic well-known set of measures. Additionally, we added def-use distance because we

hypothesised that a large def-use distance between variables gave more space for edits to

move or duplicate code between variables’ definition and use.

We applied the checkstyle tool14 to the hot methods in each project. For each method,

the cyclomatic complexity, the count of statements excluding comments (referred to by

checkstyle as non-commenting source statements — JavaNCSS), and the number of pos-

sible execution paths (NPATH) were calculated. NPATH (Nejmeh, 1988), is an extension

of cyclomatic complexity that seeks to address issues like nesting level within a function

and lack of distinction between different kinds of control flow structures. In addition, we

used the Soot static analysis tool15 to collect data on the median and average number of

lines between variable definitions and their subsequent use in the target methods. We also

calculated normalised values of these metrics adjusted for method length in lines.

The full set of random sampling results targeted 2157 methods across the ten projects.

These were filtered to include results for only those methods with:

– a length of 10 lines or more (leaving 741 methods), and

– those whose code was sampled relatively frequently relative to the number of lines (i.e.,

those with a number of patches equal to or greater than the method length in lines –

leaving 467 methods), and

– those with 100% test coverage of their statements (leaving 272 methods).

We applied the length filter above to ensure that the normalised def-use distances and other

complexity measurements were sampled from large enough tracts of code to be meaningful.

The other two filters above were applied to avoid potential bias arising from sparse sampling

and coverage. In addition there are also three percent of the corpus of methods where the Java

processing toolchain was unable to return an accurate linecount and, on the same method,

Soot was unable to extract def-use dependencies. The distributions of pass-rates for line and

statement edits for the 229 excluded methods are not significantly different (according to the

Mann-Whitney two-tailed U-test) from those for the 1929 methods in the rest of the corpus.

14 Version 8.36.2 — https://checkstyle.sourceforge.io/config_metrics.html
15 Version 3.0.3 at: https://github.com/soot-oss/soot
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Over the filtered results, we calculated the Pearson’s correlation between test pass rate

and the measures above. We also calculated correlations for average def-use distance, and

for method length in lines. The results are given in Table 8. Normalised average and median

def-use distance show a weak positive correlation with pass rates for both edit types, and

cyclomatic complexity shows a weak negative correlation with test pass rates for line edits.

However, both correlations are very weak, and none of the other measures show much of

a relationship at all, so it would seem that none of these metrics reliably predict plasticity.

It is possible that stronger correlations to code metrics are present at the level of individual

projects. To test for this possibility we ran the same correlation analysis for each project with

enough individual samples. The results of this analysis mirrored the findings for the entire

corpus. A small proportion of project/metrics produced moderate to week correlations with

a significant p-value but no features or patterns in the results provided paths to follow up.

Case Study: Looking for Rogues The foregoing analysis shows only weak correlations

between the above features and methods’ plasticity. In this section, we briefly survey the

characteristics of methods whose plasticity is more easily predicted (good-citizens) and those

whose plasticity defies easy prediction (rogues). In particular, by identifying distinctive fea-

tures of rogues we can identify promising ways to boost the skill of future predictive models

of plasticity.

To split rogues from good citizens we built four linear predictive models to be able to

identify methods that are:

1. highly plastic with respect to line edits,

2. highly plastic with respect to statement edits,

3. non-plastic with respect to line edits, and

4. non-plastic with respect to statement edits.

To build these models, we first ranked all methods according to their plasticity w.r.t single

line and w.r.t single statement edits. Then we searched for the best versions of each model

above scored according to the ratio:

model_score =
correct_prediction_count

incorrect_prediction_count + 1

where correct_prediction_count is the number of methods predicted to be plastic (non-

plastic) and were actually in the top (bottom) quartile for plasticity. Similarly, the

Table 8 Correlations between
complexity metrics and test pass
rates for each edit type. Bold
figures indicate where the
p-value associated with the
correlation is < 0.05

Metric Line edits Statement edits

Cyclomatic -0.164 -0.028

Cyclomatic normalised -0.132 0.074

JavaNCSS -0.029 -0.078

JavaNCSS normalised 0.041 0.036

NPATH -0.067 -0.039

NPATH normalised -0.081 -0.021

Average def-use distance 0.063 0.030

Average def-use distance normalised 0.253 0.204

Median def-use distance 0.108 0.070

Median def-use distance normalised 0.224 0.190

Method Length -0.074 -0.095
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incorrect_prediction_count is the number of methods predicted to be plastic (non-plastic)

but were actually in the bottom (top) quartile for plasticity.

A grid search (with a pitch of 0.01) was carried out over the three variables: normalized

average def-use distance (normAveDU); normalized median def-use distance (normMedDU);

and normalised cyclomatic complexity. The best four predictive models depended only on

the first two variables and these models are shown in Table 9.

We used these models to look for good citizens and rogue methods. For the task of

predicting plastic methods, the rogue methods were those that were predicted to be plastic,

by models 1) and 2) in Table 9, but were actually in the lowest quartile for plasticity. These,

deceptively non-plastic methods (four methods for statement edits and five methods for lines

with three in common — six unique in total) all had one or more of the following features.

The number of methods exhibiting the features is shown in brackets after each listed feature.

– relatively short method length (two methods).

– long statements or inlined classes, whose presence induces a longer def-use distance

(measured in lines) while the intra-method dependencies are actually very tight (two

methods).

– references to class variables because of the implicit data and control dependencies that

they introduce (two methods);

– calls to methods with side-effects (two methods);

– strong implicit control dependencies (three methods).

For the first point above, the average length of the deceptively non-plastic methods is

16 lines whereas the average length for the predictably plastic methods is 21 lines. The

use of normalised def-use distances may be noisier on short methods because normalisation

amplifies even very short absolute def-use distances.

Corresponding to the second point above, an example of a deceptively non-plastic method

is filterLine in the baseTestRunner class of the junit4 project (https://tinyurl.com/

y356k3r5). This method contains a multi-line string array which increases the nominal def-

use distance when counted in lines when, in reality, the method has quite tight intra-method

dependencies.

Corresponding to the third point above, another deceptive method is the configure

method in the StaticFilesConfiguration class of the spark project (https://tinyurl.

com/yc7wwdyb). This short method has few references to its parameters, but makes multiple

changes to object state that introduce implicit inter-statement dependencies.

For the task of predicting non-plastic methods using models 3) and 4) in Table 9,

there were only five unique rogues identified (all five were wrongly predicted by the

statement-based model — two overlapping by the line-based model). These rogues were

less distinct from the good citizens but seemed to exhibit localised dependencies that

admit some re-ordering of lines or statements. The extractObjectFromList in the

ResultExtractor class in mybatis (https://tinyurl.com/2p97jadz) is one example. This

Table 9 The four best predictive models derived from grid search using the variables for: normalized average
def-use distance (normAveDU); normalized median def-use distance (normMedDU); and cyclomatic com-
plexity. The best models depended only on normAveDU and normMedDU

EditType Predict Plastic Predict Non-plastic

line (1) normMedDU >= 0.51 (3) normMedDU <= 0.2 ∧ normAveDU <= 0.3

statement (2) normMedDU >= 0.53 (4) normMedDU <= 0.2 ∧ normAveDU <= 0.31
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method contains an if-statement with inter-statement dependencies in each clause but some

scope for re-ordering of guarded clauses. Another example is the getParameterType

method in theMapperAnnotationBuilder in mybatis (https://tinyurl.com/yc8xwhv5),

which has strong intra-method dependencies but has nested logic that might only be executed

in exceptional circumstances — unless these circumstances are exercised in tests, destructive

edits to the innermost edits will not be detected.

For the good citizens, the methods correctly predicted as plastic (20 unique methods

— the same set for line and statement edits) exhibit few sequential dependencies — often

consisting of long disjoint conditionals or case statements or initialisation of unconnected

fields in structures. The good citizens correctly predicted as non-plastic (17 unique methods)

exhibited very tight sequential dependencies.

Our broad observations of rogues, in particular, indicate ways in which we can refine

(boost) our models to search more broadly for dependencies and adjust our metrics to account

for shorter methods. Following the Anna Karenina principle, from Tolstoy:

All happy families are alike; each unhappy family is unhappy in its own way.

We would expect that there would be a lot of diversity in ways in which methods can

be rogues w.r.t. any model but the above features might serve as a useful starting point. In

addition, there is a lot of potential for using a broader set of features and learning models to

empirically derive models of plasticity. Such models, even if they are of moderate skill, are

a promising way to improve the efficacy of APM.

We can now answer RQ5: “Which features predict code’s plasticity, its amenability to

APM modulo a test suite?”. We find that:

Answer to RQ5

No code measure we tested showed a strong correlation with test pass rate. Only

cyclomatic complexity and normalised def-use show any correlation with pass rate,

and it is weak. The presence of tight sequential dependencies also seems to offer some

indication of plasticity.

Our earlier results (Section 5.5) revealed that pass rates fall off quickly as more edits

are applied. We might improve pass rates by targeting edits to code regions on which they

are more likely to work well (termed “plastic regions” by Harrand et al. (2019)). We have

shown that cyclomatic complexity and normalised def-use show a small correlation with

APM-ability, but it is not enough to reliably predict an edit’s success. We might consider

three possible explanations for this result.

First, there is a defining characteristic of APM-able code but our measures do not capture it.

We have considered some basic code complexity measures as a basis for a simple linear model.

Future work could consider the many other measures that have been applied in software fault

prediction (Pandey et al. (2021)) that could be deployed; knots, nesting levels, number of

unique operands, and counts of if-then or other structures are a small selection of candidates

that could be tested. Higher order and non-linear models should also be considered as part

of this work.

Second, it is possible that no set of code measures or rules can be defined to predict APM-

ability, and this becomes more likely as additional measures and model types are considered

as suggested above but still fail. We note that this kind of “I know it when I see it but I can’t

define it” problem is where artificial neural networks (ANNs) seem to work well in practice,

and indeed ANNs have already shown some potential in software fault prediction (Li et al.

(2017)). The trouble with ANNs is having sufficient training data. Larger scale experiments

than those in our study are of course possible, but costly. An alternative might be to mine
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software repositories such as GitHub for examples of small edits, although labelling these

would also prove challenging.

Third, it may simply be that the basic CDRS operators that we have considered produce

a search space that is too large to thoroughly sample.obscuring any signal from the code

measures. In addition to the motivation provided by the answers to our earlier RQs, this

further justifies the design of ‘fat’ operators that reduce that search space (at the cost of

limited applicability due to loss of universality); over these reduced search spaces the signal

should be more evident. We conclude that measures to improve search by exploring more

sophisticated, grammar-aware, and more human-like, operators; must be prioritised.

A complementary approach to increasing search effectiveness is to exploit equivalence

classes in the edit-space by immediately pruning from search those edits that produce variants

whose behaviour is equivalent to a variant that has already been tested. Varfix (Wong et al.,

2021) falls under this broad approach by avoiding repeated runs of execution paths by merging

the program state induced by different edits in multi-edit patches. We expect that work to

further exploit equivalence classes in the edit space has great potential to increase the power

of search.

6 Threats to Validity

Our results generalise to the extent to which our corpus is representative. Our corpus has two

parts: one we manually selected to be well-suited for our experimental setup and a second that

we systematically selected. Although we only use 10, we have used a systematic approach

to select the most popular, large, real-world projects, which represent a wide range of Java

applications (see Tables 1 and 2). Section 4.1 details our selection procedure. Other than our

restriction to Java, we have no reason to believe our selection criteria introduced systematic

bias. We note that our corpus is the largest used in a landscape study in the arena of automated

program modification, both in total number of projects it contains (10) and the size of each

project. Despite our focus on Java, comparison with previous work on C suggests that our

results might generalise beyond one programming language.

A less standard threat to this study’s external validity is our decision to narrow testing to

only hot methods, as identified by profiling. This focus was necessary to make this landscape

study feasible over large, real-world Java programs, due to the high computation cost of APM.

Sections 4.1 and Table 3 answer the question of whether the hot methods are representative

of methods in general. We found no dramatic difference between hot methods and other

methods within the corpus; while the differences were statistically significant, they all have

small effect sizes (< 0.2). We also considered whether the high test coverage for hot methods

might be skewed by very short methods such as getters and setters. We found this unlikely:

removing getters and setters changed the coverage figures by less than one percentage point

for all projects, and reduced the method size by a median of one line and one statement across

all projects.

In general, a test suite underapproximates a program’s specification and the degree of that

underapproximation is usually unknown, even unknowable. Thus, testing can only approxi-

mately measure a program’s correctness: A program can pass a test suite and still be arbitrarily

incorrect. Such programs are said to overfit the test suite. Overfitting is a construct validity

threat faced by all APM approaches that use testing as a measure of correctness. In an attempt

to better approximate a program’s actual specification, we could have employed ideas for

enhancing the test suite (e.g. Ye et al. (2021); Xiong et al. (2018); Xin and Reiss (2017);
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Yang et al. (2017)). We decided against doing so, because we can only speculate (and hope)

that the new tests are consistent with the actual specification and to avoid the computational

cost of running them. Like all other work in this space, we rely on the assumption that test-

passing programs are unlikely to all overfit, as the fact of meeting the partial specification

encoded in a test suite (witnessed by passing its tests), does not entail violating the rest of

the specification. Furthermore, test-passing programs sample a smaller search space that all

correct programs inhabit.

Concerning the question of whether our restriction to hot methods exacerbates this con-

struct threat, we believe that we did not make the problem much worse, as our hot method

focus restricts testing to hot method tests. As a consequence, our study does not run and

cannot overfit tests for non-hot methods.

7 RelatedWork

To date, there has only been a handful of analyses of automated program modification search

spaces (Petke et al., 2019; Harrand et al., 2019) — this stands in stark contrast to the extensive

analysis of such spaces in the field of meta-heuristic program synthesis (Gulwani, 2010).

Petke et al. (2019)’s survey on search space landscapes in genetic improvement (including

search-based program repair) identified only 14 papers, with none systematically exploring

the search space of multi-edit patches for traditional mutation operators, nor comparing line

and statement granular edits for Java. Our work thus fills this gap in the literature. Moreover,

we formalise the cost of APM, and investigate characteristics of methods that are particularly

plastic, i.e., amenable to APM.

7.1 Code Plasticity

Our study focuses on analysing how plastic is Java code under the CDRS operators. Har-

rand et al. (2019) define plasticity as the “intrinsic capability at being changed to another

code, while keeping functional correctness, with respect to a given test suite”. Identifi-

cation and exploration of plastic regions is important, as these, intuitively, represent the

places where improvements to non-functional behaviour of software might be found (without

changing software’s functional behaviour as specified by its test suite). Moreover, Renzullo

et al. (2018) show that such regions often form basis for an eventual repair. Although APR

tools that generate multi-edit patches exist (Mechtaev et al. (2016); Saha et al. (2019)), in

none of the work we found, do they analyse the whole search space of multi-edit CDRS

sequences.

The closest work to ours is Harrand et al. (2019)’s study, who sampled the space of six

Java projects (four from the commons-collection) to calculate neutral variant rates. They

consider three mutation operators, copy, delete and replace, applied at statement gran-

ularity, and report NVRs (Eq. 2) of between 15.7% and 30% for single edits. This result is

consistent with our finding of NVRs between 9.6% and 30.2%. We much extend their anal-

ysis by considering two granularities (line and statement), an additional mutation operator

(i.e., swap), a larger corpus (systematically chosen), and the space of multi-edit patches.

Moreover, we exhaustively analyse the search space of delete, the most effective operator

(Section 7).
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7.2 Size of APM landscapes

Due to the size of the APM search space with CDRS operators, exhaustive studies have

only been conducted on toy programs, with a restricted mutation set. For instance, Langdon

et al. (2017) conducted an exhaustive study, but they mutated binary comparison operators

only. In particular, they used the triangle program, that, given three integers, outputs whether

these form the edges of a triangle and, if so, whether that triangle is isosceles, scalene, or

equilateral. With 6 comparison operators and overall 17 possible mutation points, this APM

search space contains 617 mutation points. This study shows the difficulty of exhaustively

exploring APM landscapes.

More recently (Wong et al., 2021) proposed variational execution to effectively reduce the

cost of exploring edit spaces and realised in it VarFix. VarFix uses program transformations

that simultaneously encode multiple patches (i.e. distinct edits) into Boolean-guarded paths.

For each of the transformed program’s tests, a variational execution engine (Wong et al.,

2018) then enumerates the distinct states induced by patched paths leveraging state-merging to

avoid a state-explosion. The effectiveness of state-merging rests on the empirical observation

that there are often few interactions in a program’s state space between individual edits.

Their approach succeeded in greatly reducing the number of test runs required to explore

combinations of large number of edits. Because VarFix provides a means to speed up search

space exploration, its contribution is orthogonal to the current work: its use might speed our

landscape traversal but would not change any of the findings of this work.

7.3 APMGranularity

When considering APM landscapes, most research has focused on navigating the space of

statement granular operators (Petke et al., 2019). However, both line (e.g., Langdon and

Harman (2010)) and expression (e.g., Haraldsson et al. (2017); Wen et al. (2018)) granular

changes have proved effective at finding software improvements. It is worth noting that

expression-granular changes vastly increase the search space, producing even more unviable

program variants unless constraints and/or prioritisation strategies are introduced. Central to

our work is our effort to exhaustively study CDRS within our resource constraints. Additional

granularities would greatly expanded our search space and made our study shallower. Wen

et al. (2018) resort to prioritisation strategies to narrow the search space for bug fixes, a tactic

that runs counter to goal to map and characterise the search landscape. This fact, coupled

with the prominent use of line and statement granularity in the literature, is why we decided

to focus solely on line and statement granularity.

The question of determining at which operator granularity APM is most effective has been

tackled in the literature.

For example, Binkley et al. (2019) compared line and statement granularity in the obser-

vational slicing context. In particular, they compared a slicer that deletes lines of code with

one that removes AST subtrees. They used 14 C and 6 Java programs, with less than 1.5k

LoC each. They concluded that although the slices are identical in the majority of cases, the

tree-based slices are occasionally larger. They also take longer to obtain. Interestingly, in our

work we show that statement granular edits are actually more attractive than line granular

edits in terms of effectiveness and time cost. We do, however, focus on smaller edits than

commonly encountered in the slicing literature.

An et al. (2018) ran their program repair tool with two sets of APM operators

(copy, delete, and replace), at line and at statement granularity, on a 3.6k LoC Python
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program. They conclude that the statement-granular edits are more effective, finding a correct

fix for one more bug than the line-granular ones. However, statement-granular edits are less

efficient. They produce more syntactically valid patches than the line granular ones, leading

to more test case evaluations, thus taking longer to produce a patch. Their study, however,

has a different focus to ours. Rather than direct bug fixes, we are interested in finding neutral

program variants. Moreover, also taking compilation costs in Java into account, we find that

line-granular edits waste 10% more computation resources than statament-granular ones.

7.4 APR Landscapes

In the field of automated program repair (APR), studies on APM search spaces, understand-

ably, largely focused on finding bug fixes within them, rather than on NVRs. Below we

summarise latest work in this direction.

Recently, Etemadi et al. (2022) studied ca. 55k commits to statically estimate whether a

bug fix is within a search space of current APR tooling. They show that only 1.35% of those

bug fixing commits lie in the search space of at least one current APR tool. In order to best

choose which tool might be best fit for fixing bug in a given project, they thus proposed a

light-weight approach for checking whether previous fixes lie in the search space of a given

APR tool.

Along similar lines, Ginelli et al. (2022) empirically investigated the search space of an

APR tool that only uses delete to generate candidate patches. The authors showed that, not

only were candidate patches generated infrequently (< 3% of bugs), but also they did not

correctly fix a given bug in 96% of cases. Of these incorrect fixes, they find 63% is due to

the inadequacy of the test suite used. Unlike that work, we exhaustively enumerate the space

of all candidate delete operations over the subject program’s hot methods, which have high

test coverage (see Table 3).

Furthermore, Ahmad et al. (2022) recently sampled space of variants produced by four

program repair tools, and used syntactic and semantic comparison measures. They conclude

that searching in the right place is more important than searching broadly, over a semantically

and/or syntactically diverse set of variants. This supports our decision to focus on hot methods.

They suggest that a deeper understanding of how repairs are distributed throughout syntactic

and semantic search spaces is needed.

Unlike the aforementioned work, we are not interested in the ability of individual tooling

to find a bug fix. We investigate the landscape of primitive APM operators that are universal

in the sense that they can produce any variant, paying particular attention to neutral variants.

These variants can be exploited to improve both functional software properties, such as bug

fixing (Renzullo et al., 2018), and non-functional ones (Petke et al., 2019).

APR work has largely focused on the Boolean result of test cases when investigating

search landscapes. This creates landscapes with plateaus, separated by one test case failure.

To address this critique, Yuan and Banzhaf (2020) and Bian et al. (2021) proposed fitness

functions that take into account the types of test failures (e.g., NullPointerException ranked

lower than incorrect numerical output). Techniques, like this one, that smooth the landscape of

the search space would benefit all forms of APM. Unfortunately, followup work has cast doubt

on this direction, showing that it does not improve APR effectiveness in practice (Guizzo

et al. (2021)). It remains to be seen whether this direction remains promising when relaxing

the search away from directly finding patches to neutral variants.
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8 Conclusion

Automated program modifications have proven successful in optimising various software

properties, both functional, e.g., fixing bugs, and non-functional, e.g., decreasing software’s

runtime. However, the question of which edit operators should be applied to software and

at what level of granularity, is largely unsolved. Therefore, in this work we investigated

the Java program search space, to make a step towards answering that question. We have

not only considered the effect of the traditional operators, used in genetic improvement,

including search-based automated program repair, both at the statement and line-level, but

also considered the largely unused swap operator and focused on the differences between

programs to which GI and APR is applied to.

Our study on the largest APM benchmark to-date shows that statement-level operators

yield more program variants that still pass test suites, though among the variants that compile

the rate of those that pass is higher for the line-level operators. We also show that the time

required to apply and evaluate line edits is much wasted on ineffective patches. Overall, we

thus recommend the use of statement-level edits over line-level ones in future APM work.

Similarly to bug fixing work, the delete operator is the most effective, yet swap, as

implemented in the Gin toolbox we use, is second-best effective. Moreover, even though

the larger the set of random edits applied to software, the less likely it is to pass its test

suite, these edit sequences can also include self-repairs, that recover from previous failures.

Perhaps those patterns could be extracted to produce multi-edit operators.

Finally, we saw no correlation between test pass rate and several traditional code metrics,

leaving the question of which methods are more amenable to APM, and thus have potential

to be effectively improved, yet to be solved.
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