8 research outputs found

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography

    No full text
    The advantage of using non-invasive imaging such as optical coherence tomography (OCT) to asses material properties from deformed biofilm geometries can be compromised by the assumptions made on fluid forces acting on the biofilm. This study developed a method for the determination of elastic properties of biofilms by modelling the biofilm deformation recorded by OCT imaging with poroelastic fluid-structure interaction computations. Two-dimensional biofilm geometries were extracted from OCT scans of non-deformed and deformed structures as a result of hydrodynamic loading. The biofilm geometries were implemented in a model coupling fluid dynamics with elastic solid mechanics and Darcy flow in the biofilm. The simulation results were compared with real deformed geometries and a fitting procedure allowed estimation of the Young's modulus in given flow conditions. The present method considerably improves the estimation of elastic moduli of biofilms grown in mini-fluidic rectangular channels. This superior prediction is based on the relaxation of several simplifying assumptions made in past studies: shear stress is not anymore taken constant over the biofilm surface, total stress including also pressure is accounted for, any biofilm shape can be used in the determinations, and non-linear behavior of mechanical properties can be estimated. Biofilm elastic moduli between 70 and 700 Pa were obtained and biofilm hardening at large applied stress due to increasing flow velocity was quantified. The work performed here opens the way for in-situ determination of other mechanical properties (e.g., viscoelastic properties, relaxation times, plastic yields) and provides data for modelling biofilm deformation and detachment with eventual applications in biofilm control and removal strategies.BT/Environmental Biotechnolog

    Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout

    No full text
    Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose × A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells

    Long-distance electron transport in individual, living cable bacteria

    No full text
    Electron transport within living cells is essential for energy conservation in all respiring and photosynthetic organisms. While a few bacteria transport electrons over micrometer distances to their surroundings, filaments of cable bacteria are hypothesized to conduct electric currents over centimeter distances. We used resonance Raman microscopy to analyze cytochrome redox states in living cable bacteria. Cable-bacteria filaments were placed in microscope chambers with sulfide as electron source and oxygen as electron sink at opposite ends. Along individual filaments a gradient in cytochrome redox potential was detected, which immediately broke down upon removal of oxygen or laser cutting of the filaments. Without access to oxygen, a rapid shift toward more reduced cytochromes was observed, as electrons were no longer drained from the filament but accumulated in the cellular cytochromes. These results provide direct evidence for long-distance electron transport in living multicellular bacteria.BT/Environmental Biotechnolog

    The 2021 German Federal Election on Social Media: Analysing Electoral Risks Created by Twitter and Facebook

    No full text
    Safeguarding democratic elections is hard. Social media plays a vital role in the discourse around elections and during electoral campaigns. The following article provides an analysis of the ‘systemic electoral risks’ created by Twitter and Facebook and the mitigation strategies employed by the platforms. It is based on the 2020 proposal by the European Commission for the new Digital Services Act (DSA) in the context of the 2021 German federal elections. This article focuses on Twitter and Facebook and their roles during the German federal elections that took place on 26 September 2021. We analysed three systemic electoral risk categories: 1) the dissemination of illegal content, 2) negative effects on electoral rights, and 3) the influence of disinformation and developed systematic categories for this purpose. In conclusion, we discuss how to respond to these challenges as well as avenues for future research.Organisation & Governanc

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    No full text
    corecore