193 research outputs found

    Deformability of Human Mesenchymal Stem Cells Is Dependent on Vimentin Intermediate Filaments

    Get PDF
    Mesenchymal stem cells (MSCs) are being studied extensively due to their potential as a therapeutic cell source for many load-bearing tissues. Compression of tissues and the subsequent deformation of cells are just one type physical strain MSCs will need to withstand in vivo. Mechanotransduction by MSCs and their mechanical properties are partially controlled by the cytoskeleton, including vimentin intermediate filaments (IFs). Vimentin IF deficiency has been tied to changes in mechanosensing and mechanical properties of cells in some cell types. However, how vimentin IFs contribute to MSC deformability has not been comprehensively studied. Investigating the role of vimentin IFs in MSC mechanosensing and mechanical properties will assist in functional understanding and development of MSC therapies. In this study, we examined vimentin IFs’ contribution to MSCs’ ability to deform under external deformation using RNA interference. Our results indicate that a deficient vimentin IF network decreases the deformability of MSCs, and that this may be caused by the remaining cytoskeletal network compensating for the vimentin IF network alteration. Our observations introduce another piece of information regarding how vimentin IFs are involved in the complex role the cytoskeleton plays in the mechanical properties of cells

    Ectopic models for endochondral ossification: comparing pellet and alginate bead culture methods

    Get PDF
    Key aspects of native endochondral bone development and fracture healing can be mimicked in mesenchymal stem cells (MSCs) through standard in vitro chondrogenic induction. Exploiting this phenomenon has recently emerged as an attractive technique to engineer bone tissue, however, relatively little is known about the best conditions for doing so. The objective of the present study was to compare the bone-forming capacity and angiogenic induction of hypertrophic cell constructs containing human adipose-derived stem cells (hASCs) primed for chondrogenesis in two different culture systems: high-density pellets and alginate bead hydrogels. The hASC constructs were subjected to 4 weeks of identical chondrogenic induction in vitro, encapsulated in an agarose carrier, and then implanted subcutaneously in immune-compromised mice for 8 weeks to evaluate their endochondral potential. At the time of implantation, both pellets and beads expressed aggrecan and type II collagen, as well as alkaline phosphatase (ALP) and type X collagen. Interestingly, ASCs in pellets formed a matrix containing higher glycosaminoglycan and collagen contents than that in beads, and ALP activity per cell was higher in pellets. However, after 8 weeks in vivo, pellets and beads induced an equivalent volume of mineralized tissue and a comparable level of vascularization. Although osteocalcin and osteopontin-positive osteogenic tissue and new vascular growth was found within both types of constructs, all appeared to be better distributed throughout the hydrogel beads. The results of this ectopic model indicate that hydrogel culture may be an attractive alternative to cell pellets for bone tissue engineering via the endochondral pathway

    Dysfunctional stem and progenitor cells impair fracture healing with age

    Get PDF
    Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly

    Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro

    Get PDF
    High energy trauma to cartilage causes surface fissures and microstructural damage, but the degree to which this damage renders the tissue more susceptible to wear and contributes to the progression of post-traumatic osteoarthritis (PTOA) is unknown. Additionally, no treatments are currently available to strengthen cartilage after joint trauma and to protect the tissue from subsequent degradation and wear. The purposes of this study were to investigate the role of mechanical damage in the degradation and wear of cartilage, to evaluate the effects of impact and subsequent genipin crosslinking on the changes in the viscoelastic parameters of articular cartilage, and to test the hypothesis that genipin crosslinking is an effective treatment to enhance the resistance to biochemical degradation and mechanical wear. Results demonstrate that cartilage stiffness decreases after impact loading, likely due to the formation of fissures and microarchitectural damage, and is partially or fully restored by crosslinking. The wear resistance of impacted articular cartilage was diminished compared to undamaged cartilage, suggesting that mechanical damage that is directly induced by the impact may contribute to the progression of PTOA. However, the decrease in wear resistance was completely reversed by the crosslinking treatments. Additionally, the crosslinking treatments improved the resistance to collagenase digestion at the impact-damaged articular surface. These results highlight the potential therapeutic value of collagen crosslinking via genipin in the prevention of cartilage degeneration after traumatic injury

    Mineral deposition and vascular invasion of hydroxyapatite reinforced collagen scaffolds seeded with human adipose-derived stem cells

    Get PDF
    Background: Collagen-based scaffolds reinforced with hydroxyapatite (HA) are an attractive choice for bone tissue engineering because their composition mimics that of bone. We previously reported the development of compression-molded collagen-HA scaffolds that exhibited high porosity, interconnected pores, and mechanical properties that were well-suited for surgical handling and fixation. The objective of this study was to investigate these novel collagen-HA scaffolds in combination with human adipose-derived stem cells (hASCs) as a template for bone formation in a subcutaneous athymic mouse model. Methods: Collagen-HA scaffolds and collagen-only scaffolds were fabricated as previously described, and a clinically approved bone void filler was used as a control for the material. Constructs were seeded with hASCs and were pre-treated with either control or osteogenic media. A cell-free group was also included. Scaffolds were implanted subcutaneously in the backs of athymic nude mice for 8 weeks. Mineral deposition was quantified via micro-computed tomography. Histological and immunofluorescence images of the explants were used to analyze their vascular invasion, remodeling and cellularity. Results: Cell-free collagen-HA scaffolds and those that were pre-seeded with osteogenically differentiated hASCs supported mineral deposition and vascular invasion at comparable rates, while cell-seeded constructs treated with the control medium showed lower mineralization after implantation. HA-reinforcement allowed collagen constructs to maintain their shape, provided improved cell-tissue-scaffold integration, and resulted in a more organized tissue when pre-treated in an osteogenic medium. Scaffold type and pre-treatment also determined osteoclast activity and therefore potential remodeling of the constructs. Conclusions: The results of this study cumulatively indicate that treatment medium and scaffold composition direct mineralization and angiogenic tissue formation in an ectopic model. The data suggest that it may be necessary to match the scaffold with a particular cell type and cell-specific pre-treatment to achieve optimal bone formation

    Computational investigation of fibrinmechanical and damage properties at the interface between native cartilage and implant

    Get PDF
    Scaffold-based tissue-engineered constructs as well as cell-free implants offer promising solutions to focal cartilage lesions. However, adequate mechanical stability of these implants in the lesion is required for successful repair. Fibrin is the most common clinically available adhesive for cartilage implant fixation, but fixation quality using fibrin is not well understood. The objectives of this study were to investigate the conditions leading to damage in the fibrin adhesive and to determine which adhesive properties are important in preventing delamination at the interface. An idealized finite element model of the medial compartment of the knee was created, including a circular defect and an osteochondral implant. Damage and failure of fibrin at the interface was represented by a cohesive zone model with coefficients determined from an inverse finite element method and previously published experimental data. Our results demonstrated that fibrin glue alone may not be strong enough to withstand physiologic loads in vivo while fibrin glue combined with chondrocytes more effectively prevents damage at the interface. The results of this study suggest that fibrin fails mainly in shear during off-axis loading and that adhesive materials that are stronger or more compliant than fibrin may be good alternatives due to decreased failure at the interface. The present model may be used to improve design and testing protocols of bioadhesives and give insight into the failure mechanisms of cartilage implant fixation in the knee joint

    Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: Spheroid characterization and osteogenic differentiation

    Get PDF
    Limitations in scaffold material properties, such as sub-optimal degradation time, highlight the need for alternative approaches to engineer de novo tissues. One emerging solution for fabricating tissue constructs is scaffold-free tissue engineering. To facilitate this approach, three-dimensional (3D) bioprinting technology (Regenova Bio 3D Printer) has been developed to construct complex geometric shapes from discrete cellular spheroids without exogenous scaffolds. Optimizing spheroid fabrication and characterizing cellular behavior in the spheroid environment are important first steps prior to printing larger constructs. Here, we characterized spheroids of immortalized mouse bone marrow stromal cells (BMSCs) that were differentiated to the osteogenic lineage. Immortalized BMSCs were seeded in low attachment 96-well plates in various numbers to generate self-aggregated spheroids either under the force of gravity or centrifugation. Cells were cultured in control or osteogenic media for up to 28 days. Spheroid diameter, roundness and smoothness were measured. Cell viability, DNA content and alkaline phosphatase activity were assessed at multiple time points. Additionally, expression of osteogenic markers was determined using real time qPCR. Spheroids formed under gravity with 20 K, 30 K and 40 K cells had average diameters of 498.5 ± 8.3 μm, 580.0 ± 32.9 μm and 639.2 ± 54.0 μm, respectively, while those formed under 300G centrifugation with the same numbers of cells had average diameters of 362.3 ± 3.5 μm, 433.1 ± 6.4 μm and 491.2 ± 8.0 μm. Spheroids formed via centrifugation were superior to those formed by gravity, as evidenced by better roundness and smoothness and double the retention of DNA (cellular) content. Cells in spheroids exhibited a robust osteogenic response to the differentiation medium, including higher mRNA expression of alkaline phosphatase, collagen type I, and osteocalcin than those cultured in control medium, as well as greater alkaline phosphatase activity. The optimal spheroid fabrication technique from this study was to aggregate 40 K cells under 150–300G centrifugation. In future investigations, these spheroids will be 3D printed into larger tissue constructs

    Invasive potential of cattle fever ticks in the southern United States

    Get PDF
    Background For >100 years cattle production in the southern United States has been threatened by cattle fever. It is caused by an invasive parasite-vector complex that includes the protozoan hemoparasites Babesia bovis and B. bigemina, which are transmitted among domestic cattle via Rhipicephalus tick vectors of the subgenus Boophilus. In 1906 an eradication effort was started and by 1943 Boophilus ticks had been confined to a narrow tick eradication quarantine area (TEQA) along the Texas-Mexico border. However, a dramatic increase in tick infestations in areas outside the TEQA over the last decade suggests these tick vectors may be poised to re-invade the southern United States. We investigated historical and potential future distributions of climatic habitats of cattle fever ticks to assess the potential for a range expansion. Methods We built robust spatial predictions of habitat suitability for the vector species Rhipicephalus (Boophilus) microplus and R. (B.) annulatus across the southern United States for three time periods: 1906, present day (2012), and 2050. We used analysis of molecular variance (AMOVA) to identify persistent tick occurrences and analysis of bias in the climate proximate to these occurrences to identify key environmental parameters associated with the ecology of both species. We then used ecological niche modeling algorithms GARP and Maxent to construct models that related known occurrences of ticks in the TEQA during 2001–2011 with geospatial data layers that summarized important climate parameters at all three time periods. Results We identified persistent tick infestations and specific climate parameters that appear to be drivers of ecological niches of the two tick species. Spatial models projected onto climate data representative of climate in 1906 reproduced historical pre-eradication tick distributions. Present-day predictions, although constrained to areas near the TEQA, extrapolated well onto climate projections for 2050. Conclusions Our models indicate the potential for range expansion of climate suitable for survival of R. microplus and R. annulatus in the southern United States by mid-century, which increases the risk of reintroduction of these ticks and cattle tick fever into major cattle producing areas.We thank USDA-APHIS mounted patrol inspectors for collecting field samples used in this study. This work was supported by USDA-NIFA Grant 2010-65104-20386. Use of trade, product, or firm names does not imply endorsement by the US Government. The USDA is an equal opportunity provider and employer

    Randomized Controlled Pilot Trial of Mindfulness-Based Stress Reduction Compared to Psychoeducational Support for Persistently Fatigued Breast and Colorectal Cancer Survivors

    Get PDF
    Purpose Cancer-related fatigue (CRF) is a disruptive symptom for many survivors. Despite promising evidence for efficacy of Mindfulness-Based Stress Reduction (MBSR) in reducing CRF, no trials comparing it to an active comparator for fatigued survivors have been published. The purpose of this trial was to compare MBSR to psychoeducation for CRF and associated symptoms. Methods Breast (n=60) and colorectal (n=11) cancer survivors (stage 0–III) with clinically significant CRF after completing chemotherapy and/or radiation therapy an average of 28 months prior to enrollment were randomized to MBSR or psychoeducation/support groups (PES). MBSR focused on mindfulness training; PES focused on CRF self-management. Outcomes included CRF interference (primary), CRF severity and global improvement, vitality, depression, anxiety, sleep disturbance, and pain. Outcomes were assessed at baseline (T1), post-intervention (T2), and 6-month follow-up (T3) using intent-to-treat analysis. Results Between-group differences in CRF interference were not significant at any time point; however, there was a trend favoring MBSR (d=−0.46, p=0.073) at T2. MBSR participants reported significantly greater improvement in vitality (d=0.53, p=0.003) and were more likely to report CRF as moderately-to-completely improved compared to the PES group (χ2 (1)=4.1765, p=0.041) at T2. MBSR participants also reported significantly greater reductions in pain at T2 (d=0.53, p=0.014). In addition, both MBSR and PES produced moderate-to-large and significant within-group improvements in all fatigue outcomes, depression, anxiety, and sleep at T2 and T3 compared to T1. Conclusion MBSR and PES appear efficacious for CRF and related symptoms. Larger trials including a usual care arm are warranted

    Anisotropic Properties of Articular Cartilage in an Accelerated In Vitro Wear Test

    Get PDF
    Many material properties of articular cartilage are anisotropic, particularly in the superficial zone where collagen fibers have a preferential direction. However, the anisotropy of cartilage wear had not been previously investigated. The objective of this study was to evaluate the anisotropy of cartilage material behavior in an in vitro wear test. The wear and coefficient of friction of bovine condylar cartilage were measured with loading in directions parallel (longitudinal) and orthogonal (transverse) to the collagen fiber orientation at the articular surface. An accelerated cartilage wear test was performed against a T316 stainless-steel plate in a solution of phosphate buffered saline with protease inhibitors. A constant load of 160 N was maintained for 14000 cycles of reciprocal sliding motion at 4 mm/s velocity and a travel distance of 18 mm in each direction. The contact pressure during the wear test was approximately 2 MPa, which is in the range of that reported in the human knee and hip joint. Wear was measured by biochemically quantifying the glycosaminoglycans (GAGs) and collagen that was released from the tissue during the wear test. Collagen damage was evaluated with collagen hybridizing peptide (CHP), while visualization of the tissue composition after the wear test was provided with histologic analysis. Results demonstrated that wear in the transverse direction released about twice as many GAGs than in the longitudinal direction, but that no significant differences were seen in the amount of collagen released from the specimens. Specimens worn in the transverse direction had a higher intensity of CHP stain than those worn in the longitudinal direction, suggesting more collagen damage from wear in the transverse direction. No anisotropy in friction was detected at any point in the wear test. Histologic and CHP images demonstrate that the GAG loss and collagen damage extended through much of the depth of the cartilage tissue, particularly for wear in the transverse direction. These results highlight distinct differences between cartilage wear and the wear of traditional engineering materials, and suggest that further study on cartilage wear is warranted. A potential clinical implication of these results is that orienting osteochondral grafts such that the direction of wear is aligned with the primary fiber direction at the articular surface may optimize the life of the graft
    • …
    corecore