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Abstract 
 
Limitations in scaffold material properties, such as sub-optimal degradation time, 

highlight the need for alternative approaches to engineer de novo tissues. One emerging 

solution for fabricating tissue constructs is scaffold-free tissue engineering.  To facilitate this 

approach, three-dimensional (3D) bioprinting technology (Regenova Bio 3D Printer) has been 

developed to construct complex geometric shapes from discrete cellular spheroids without 

exogenous scaffolds. Optimizing spheroid fabrication and characterizing cellular behavior in the 

spheroid environment are important first steps prior to printing larger constructs. Here, we 

characterized spheroids of immortalized mouse bone marrow stromal cells (BMSCs) that were 

differentiated to the osteogenic lineage. 

Immortalized BMSCs were seeded in low attachment 96-well plates in various numbers 

to generate self-aggregated spheroids either under the force of gravity or centrifugation.  Cells 

were cultured in control or osteogenic media for up to 28 days. Spheroid diameter, roundness 

and smoothness were measured. Cell viability, DNA content and alkaline phosphatase activity 

were assessed at multiple time points. Additionally, expression of osteogenic markers was 

determined using real time qPCR.  

Spheroids formed under gravity with 20K, 30K and 40K cells had average diameters of 

498.5 ± 8.3 µm, 580.0 ± 32.9 µm and 639.2 ± 54.0 µm, respectively, while those formed under 

300G centrifugation with the same numbers of cells had average diameters of 362.3 ± 3.5 µm, 

433.1 ± 6.4 µm and 491.2 ± 8.0 µm. Spheroids formed via centrifugation were superior to those 

formed by gravity, as evidenced by better roundness and smoothness and double the retention 

of DNA (cellular) content. Cells in spheroids exhibited a robust osteogenic response to the 

differentiation medium, including higher mRNA expression of alkaline phosphatase, collagen 

type I, and osteocalcin than those cultured in control medium, as well as greater alkaline 

phosphatase activity. The optimal spheroid fabrication technique from this study was to 
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aggregate 40K cells under 150 – 300G centrifugation. In future investigations, these spheroids 

will be 3D printed into larger tissue constructs. 

 

1. Introduction 

 
The majority of tissue engineering methods utilize exogenous biocompatible scaffolds to 

support cell attachment onto precisely designed templates, but several challenges persist in 

tissue engineering with these methods.  The selection of an appropriate scaffold is important as 

many issues such as cell-cell communication, cell-ECM/scaffold communication, 

immunogenicity, toxicity, inflammation, and mechanical incompatibility are directly determined 

by scaffold properties1–3. One of the limitations of tissue engineering approaches using 

exogenous scaffolds is degradation time. A fast-kinetic degradation scaffold may produce 

byproducts (acidic, basic, or otherwise deleterious) at a concentration too high for the 

surrounding tissue to resorb, and can affect the viability of the cells.  Alternately, scaffolds that 

do not degrade quickly enough may hinder matrix production2,4,5. Scaffold-free engineering 

methods provide alternative assembly systems for generating new tissues2,6–8. Using the 

scaffold-free method, cells secrete the extracellular matrix required to provide structure. 

Therefore, the cells are within a biologically optimized extra-cellular matrix (ECM) environment 

to which they are suited. The utilization of cell-secreted ECM also eliminates the need to rely on 

the degradation of synthetic scaffold materials.  

The Regenova Bio 3D Printer from Cyfuse facilitates the high-resolution fabrication of 

scaffold-free tissue engineered constructs in custom shapes by three-dimensional (3D) printing 

scaffold-free cellular spheroids9–13. The appeal of 3D printing resonates with its relative ease of 

generating a particular 3D geometry and the accuracy of situating cellular spheroids in a pre-

designed spatial location. The Regenova system has been used to construct various tissues 

associated with the vasculature, tracheal tissue, and to regenerate cartilage defects with high-
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density mesenchymal stem cells9,10,12,13. The Regenova system sets itself apart from other 3D 

bioprinters by skewering individual cellular spheroids into a predetermined design onto an array 

of stainless steel needles (170 µm in diameter in either a 9x9 or a 26x26 pattern) called a 

Kenzan. This “Kenzan method” does not use a scaffold for final structural support, but relies 

instead on natural cell-to-cell contact behavior (e.g. cadherin-mediated adhesion, integrins, 

connexins, and adherence junctions), to facilitate spheroid fusion14,15, resulting in a larger tissue 

construct.  The secretion of ECM adds structural integrity to the construct as it matures16–21.  

The cellular spheroids form the building blocks of the tissue and must provide an environment 

that supports extracellular matrix deposition and the maintenance of metabolic functions22.   

In order to create 3D tissues with the Regenova Bio 3D Printer, the spheroid formation 

has to be optimized to a target diameter of 500 µm with an acceptable range of ~450-550 µm 

and appropriate symmetry and strength to successfully survive automated retrieval and 

organized placement during printing.  While the optimal spheroid size for Kenzan bioprinting 

with this device is 500 µm (figure 1(a)), spheroids as large as 1 mm can be picked up, and 

spheroids as large as 800 µm have been printed using the Regenova. However, large spheroids 

interfere with one another during the printing process such that, when printed adjacent to one 

another, each spheroid will push the preceding spheroid down the needle, changing the 

construct shape and dimensions, and risking spheroid rupture (figures 1(b) and (c)). 

Additionally, oversized spheroids may distort the spacing between the needles in the array as 

printing progresses from the bottom to the top of the Kenzan.  Therefore, the use of large 

spheroids may only be suitable for general printability testing and to determine spheroid 

behavior post-printing. Undersized spheroids (400 µm or less) may be difficult to pick up and 

high numbers of spheroids may fail to print due to splitting as they are placed over the Kenzan 

needles (figure 1(d)). Furthermore, center-to-center needle spacing on the Kenzan needles is 

400 µm. Therefore, undersized spheroids cannot span the needle gap and contact one another, 

such that spheroid-spheroid fusion, integral to post-printing construct maturation, may not occur.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

In this study we focused on characterizing spheroids for use in the Regenova Bio 3D 

printer and the Kenzan method of biofabrication to develop a bone tissue construct for 

craniofacial reconstruction. It is estimated that 17 million surgeries in the craniofacial region are 

performed in the United States23,24. Difficulties repairing cranial bone defects caused by severe 

trauma, infection and congenital deformity remain a major challenge to cranial surgeons25. 

These procedures heavily rely on archaic techniques currently available to surgeons, which 

include utilizing foreign materials such as metal plates, bone cement, and stainless-steel grids 

for reinforcement26–28. Anatomically correct reconstruction of highly complex craniofacial shape 

is challenging; the ability to engineer anatomically correct tissues with viable and functional cells 

would have tremendous potential for bone reconstructions26–28. Here, we use immortalized 

mouse bone marrow stromal cells (BMSCs) which have been previously characterized in terms 

of their osteogenic properties under two-dimensional (2D) culture conditions29. We compared 

methods of spheroid formation by centrifugation-assisted aggregation and gravity-assisted 

aggregation, and analyzed the resulting spheroids for viability, osteogenic activity in 3D 

structures and suitability for printing. This study provides a detailed optimization of BMSC 

spheroids for use in the bioprinting of larger constructs using the Regenova Bio 3D Printer 

robotics system by Cyfuse. 

 

2. Methods 

2.1 Bone marrow derived stromal cell (BMSC) culture 

Immortalized BMSCs were generated from C57BL/6 mice as previously described by 

Alvarez et al29. Briefly, immortalized wild-type clones were selected based on their positive 

staining for alkaline phosphatase and capacity for mineralization29. Frozen BMSCs were 

thawed, expanded, and cultured in control medium (Alpha-Minimum Essential Medium (α-MEM, 

Gibco ®, NY, USA), 10% fetal bovine serum (Atlas Biologicals, CO, USA), 1% penicillin-

streptomycin-glutamate (Gibco ®, NY, USA), and 0.001% amphotericin B (Sigma-Aldrich, 
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MO,USA). For cell passaging, cells were cultured up to 90% confluence and then were 

detached with trypsin-EDTA (0.25%, Gibco ®) and were seeded into new dishes or used for 

generation of spheroids as described below.  

2.2 Spheroid formation  

Gravity-induced spheroids (Passage 31) were generated by seeding BMSC in Ultra Low 

Attachment (ULA) U-bottom 96 well plates (SBIOTM, Japan). Different cell concentrations were 

seeded (5K, 10K, 15K, 20K, 30K and 40K) to generate spheroids with a target diameter 

between 450 to 550 µm at day 3. BMSC spheroids were cultured in control medium or in the 

same medium supplemented with 50 mg/ml of L-ascorbic acid 2-phosphate (Sigma-Aldrich) and 

200 mM β-glycerophosphate disodium salt hydrate (Sigma-Aldrich), referred to as osteogenic 

medium. Media were changed three times per week. 

Centrifuge-induced spheroids (Passage 36) were generated by adding 20K, 30K, 40K or 

50K BMSC cells/well in ULA U-bottom 96 well plates, under the same media conditions, but 

plates were centrifuged for 5 min at 150G or 300G immediately after cell seeding.     

Both gravity- and centrifuge-induced spheroids were cultured for up to 28 days.  

Spheroid diameter, roundness and smoothness were measured with the Regenova Bio 3D 

Printer scanner (Regenova Bio 3D Printer, Cyfuse, K.K., Japan) at various time points. 

Roundness was calculated by the Regenova 3D Printer from the radius of the smallest 

circumscribed circle of the spheroid (R) and the radius (r) of an inscribed circle, concentric with 

the first circle, and contacting the spheroid perimeter. Roundness was then calculated using the 

following equation:  

                             ����������%
 = �100 − ������� �� ∗ 100                                              (1) 

Smoothness was determined by measuring the area of the regions deviating from the 

average of the minimum and maximum contour of the spheroid (DA) and then dividing by the 

spheroid area (SA):  
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                            �����ℎ�����%
 = ��
�� ∗ 100                                                                                                

(2) 

  

The exponential decay model parameters were fit to the spheroid diameter data using 

SigmaPlot (Systat Software Inc., CA, USA):   

                                      ��� =  !" #1 + ���
�%�
& �',                                                                        (3) 

where Deq is the diameter at equilibrium, t is time, and τ is the exponential time constant.  

2.3 Cell Viability and Spheroid Morphology 

Gravity-induced spheroids composed of 20K cells were harvested at time points up to 11 

days and were dissociated with 2% collagenase type 2 (Worthington Biochemical Corporation, 

NJ, USA) in α-MEM for 60 minutes. The percentage of viable cells in each spheroid was 

assessed by counting cells excluding Trypan Blue Stain (0.4%; Gibco ®) with a hemocytometer 

(n=4), dividing by the total number of counted cells and then multipling by 100%.  

Spheroids were fixed with 10% neutral buffered formalin for 24 hours before being 

encapsulated in 2% agarose for 10 minutes to facilitate handling. Spheroids were then stored in 

70% ethanol until they were embedded in paraffin, sectioned, and stained with Hematoxylin and 

Eosin (H&E) and imaged under light microscopy with 10X and 40X objectives.  

2.4 Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)  

Total RNA was isolated by pooling 8 gravity-induced spheroids per replicate (n=3) that 

had been cultured in osteogenic or control medium using the RNeasy® Plus Mini Kit (Qiagen, 

MD, USA), according to the manufacturer’s protocol, at days 3, 7, 11, 14, 21 and 28. Aliquots of 

cell suspension with the appropriate cell density were collected on day 0. cDNA was generated 

with Transcriptor First Strand cDNA Synthesis Kit (Roche Life Science, IN, USA). qPCR was 

performed using SYBR Master Mix (Life Technology, CA, USA) to assess the expression of 

osteogenic differentiation markers alkaline phosphatase (ALP), collagen type I (COL 1A1), and 
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osteocalcin (OCN), which were normalized against glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) using the primer sequences in Table 1. The reactions were carried out on the ABI 

qPCR system (Applied Biosystems, CA, USA). A calibration curve was performed and all 

oligonucleotides were tested to ensure specificity and sensitivity. For all samples, ∆∆CT method 

with day 0 as the reference was used for the analysis of the data  as previously described30. 

 

Gene Forward Reverse 

ALP 5’-GCTGATCATTCCCACGTTTT-3’ 5’-CTGGGCCTGGTAGTTGTTGT-3’ 

COL 1A1 5’-ACGTCCTGGTGAAGTTGGTC-3’ 5’-CAGGGAAGCCTCTTTCTCCT-3’ 

OCN 5’-AAGCAGGAGGGCAATAAGGT-3’ 5’-TTTGTAGGCGGTCTTCAAGC-3’ 

GAPDH 5’-CGTGGGGCTGCCCAGAACAT-3’ 5’-TCTCCAGGCGGCACGTCAGA-3’ 

 

Table 1: Primer Sequences for RT-qPCR 

 

2.5 DNA Quantification and Alkaline Phosphatase (ALP) Activity 

To assess total DNA content, aliquots of cell suspension with the appropriate cell density 

were collected on day 0 and spheroids of 20K cells each were collected on days 1, 3, 7, 14, 21 

and 28. Four spheroids were collected per replicate (n=3) and digested in 0.1% Triton-X 

(Sigma-Aldrich) with protease inhibitors. The DNA content of samples was assessed via Quant-

iT PicoGreen dsDNA Reagent Kit (Invitrogen, CA, USA) following the manufacturer’s 

instructions. DNA content was normalized to the day 0 spheroids.  Model parameters of 

exponential decay were fit to the DNA data using Sigmaplot:   

                                               ()��� =  ()!" #1 + ���
�%�
& �',                                           (4) 
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where DNAeq is the normalized DNA at equilibrium, t is time, and τ is the exponential time 

constant.  

The same BMSC spheroid digests were assessed for ALP activity using the Alkaline 

Phosphatase Assay kit (Sigma-Aldrich®) according to the manufactures’ protocols. Enzymatic 

ALP activity was calculated per minute and normalized to DNA content.   

2.6 Statistics and Analysis 

Unless otherwise indicated, all data are expressed as the mean ± SD. All data were 

analyzed by a 2-way ANOVA using Tukey’s post hoc analysis and p < 0.05 as a threshold of 

statistical significance  

 

3. Results  

3.1 Spheroid Diameter and Cell Viability 

Different cell concentrations were seeded to generate gravity-induced spheroids with a 

target diameter of 500 µm on day 3. Spheroids did not form at 5K, 10K and 15K. Spheroids had 

diameters of 498.5 ± 8.3 µm for 20K cells per well, 580.0 ± 32.9 µm for 30K cells, and 639.2 ± 

54.0 µm for 40K cells (figure 2(a)). Gravity-induced spheroids seeded at 20K cells per well were 

adequate for printing based on spheroid diameter and were used in additional studies. 

The Regenova’s scanner feature was used to image spheroids cultured in both control 

and osteogenic media, hereon referred to as control and osteogenic spheroids. On day 1, 

diameters were 830 ± 107 µm for controls spheroids (n=79) and 785 ± 94 µm for osteogenic 

spheroids (n=80). The coefficients of exponential decay in equation (3) were fit to the spheroid 

diameter measurements, with R2 values of 0.98 and 0.99 for control and osteogenic spheroids, 

respectively. Spheroid diameters decreased over time before reaching steady state values with 

τ equal to 2.2 days for both control and osteogenic spheroids. The diameter at equilibrium (Deq) 

best-fit values of the model for control spheroids was 441 µm and for osteogenic spheroids was 
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443 µm (figure 2(b) and (c)).The percentage of cells excluding trypan blue was higher than 85% 

in both groups at all time points examined (figure 2(b) and 2(c)). 

3.2 Histology (H&E) 

The size of the gravity-induced spheroids decreased over time when cultured in either 

control or osteogenic medium (upper panel of figure 3; 10X objective). The spheroids produced 

by gravity on day 1, 2, and 3 were somewhat irregularly shaped. Spheroids cultured in both 

control and osteogenic medium were highly cellular (lower panel of figure 3; 40X objective).  

3.3 mRNA Expression 

Spheroids cultured in osteogenic medium expressed higher levels of osteogenic specific 

genes compared to spheroids cultured in control medium (figure 4). Specifically, ALP mRNA 

expression was 30-fold and 14-fold higher on day 11 and 14, respectively (figure 4(a)). 

Likewise, COL 1A1 mRNA expression was significantly higher on days 14 (8-fold increase), 21 

(6-fold increase), and 28 (10-fold increase) when spheroids were cultured in osteogenic medium 

compared to control medium (figure 4(b)). Furthermore, osteogenic spheroids displayed a 16-

fold increase of OCN gene expression when compared to control spheroids on day 21, and a 

14-fold increase on day 28 (figure 4(c)).  

3.4 DNA Content 

DNA content analyses were performed on spheroids generated by both gravity and 

centrifugation. The DNA kinetic profile for gravity- and centrifuge-induced spheroids were similar 

to the diameter profile (figure 5). The parameters of equation (4) were fit to the DNA kinetic 

profile with an R2 higher than 0.90 for both gravity- and centrifuge-induced spheroids. On days 0 

and 1, control and osteogenic spheroids showed higher levels of DNA than observed at 

subsequent time points for both gravity- and centrifuge-induced spheroids. For all groups, the 

DNA content decreased after day 0 with τ of 2.2 days for both control and osteogenic for 

gravity-induced spheroids. The exponential decay was shorter for centrifuge-induced spheroids, 

with τ  of 0.2 days for control spheroids and 0.5 days for osteogenic spheroids. Accordingly, the 
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DNA content approximated steady state by day 3 in gravity-induced spheroids and by day 1 in 

centrifuge-induced spheroids. Importantly, a greater percentage of DNA content was retained 

from day 3 to day 28 for centrifuge-induced spheroids compared to that observed for gravity-

induced spheroids. Indeed, the equilibrium DNA profile by gravity-induced spheroids decreased 

approximately 80% from day 0, whereas the equilibrium DNA profile by centrifuge-induced 

spheroids decreased approximately by 40%. Therefore, spheroids formed via centrifugation 

were deemed superior to those formed by gravity alone as determined by 2-fold more DNA 

content retention.   

3.5 Spheroid Diameter on Day 3 

As a primary goal was to characterize spheroids for use in 3D bioprinting, we next 

assessed the parameters of importance for this application: diameters ranging between 450 and 

550 µm with 500 µm being the target diameter, as well as optimal roundness and smoothness. 

We determined these properties on day 3 as it was the time point when DNA levels had reached 

steady state in all cases. Figure 6 (a) shows representative silhouettes of the spheroids that 

were formed by gravity and centrifugation at different speeds. The spheroids produced via 

gravity and cell aggregation (20K cells) had a diameter of 498.5 ± 8.3 µm while those formed 

under centrifugation with the same number of cells had a diameter of 352.3 ± 7.1 µm at 150G 

and 362.3 ± 3.5 µm at 300G on day 3 (figure 6(b)). Under centrifugation, spheroids formed from 

40K cells were the closest to the target diameter of 500 µm, with diameters of 486.1± 7.5 µm 

and 491.2± 8.0 µm for 150G and 300G, respectively. Spheroids formed by gravity resulted in 

17% and 19% less roundness than spheroids formed by the centrifugation method at 150G and 

300G, respectively (figure 6(c)). Gravity-induced spheroids were observed with a range of 

smoothness from 0.0% to 7.1% (0% as the best, 100% as the worst). In comparison, centrifuge-

induced spheroids exhibited a range of smoothness from 0.0% to 0.2% (figure 6(d)). The 

different centrifugation speeds did not have any impact on spheroid diameter, roundness, or 

smoothness (figure 6(b)-(d)). 
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3.6 Alkaline Phosphatase Activity 

  Next, we investigated ALP activity levels in spheroids formed by either gravity or by 

centrifugation at 300G (20,000 cells/spheroid) and cultured in either control or osteogenic 

media. Similar to mRNA expression in gravity-induced spheroids, ALP activity significantly 

increased when spheroids were cultured in osteogenic medium as compared to control medium 

in both gravity- and centrifuge-induced spheroids (figure 7). Gravity-induced spheroids showed 

a significant 2.7-fold increase in alkaline phosphatase activity on day 7, a 1.8-fold increase on 

day 11, a 6.7-fold increase on day 21, and an 8.8-fold increase on day 28 when cultured in 

osteogenic medium compared to control medium (figure 7(a)). For centrifuge-induced 

spheroids, there was a significant 1.2- fold increase in ALP activity on day 1, a >2-fold increase 

on days 3, 7, 21 and 28, and a 1.6-fold increase on day 11 when cultured in osteogenic medium 

compared to control medium (figure 7(b)).   

4. Discussion 
 

In this study, we optimized the generation of immortalized BMSC spheroids for printing 

live tissues using the Regenova 3D printer. The data illustrates that spheroids from immortalized 

BMSCs cultured in osteogenic media are viable and express osteogenic genes such as ALP 

(major enzymatic activity of osteoblasts), COL 1A1 (the main collagen expressed by 

osteoblasts), and OCN (the main non-collagenous protein secreted by osteoblasts and a marker 

of mature osteoblasts). Not only were these osteogenic genes upregulated in response to 

osteogenic differentiation media, but ALP activity was also increased. Furthermore, 

immortalized BMSC spheroids generated by centrifugation retained a higher percentage of DNA 

content than those that self-aggregated under gravity. BMSCs spheroids generated by 

centrifugation required a greater number of cells to meet the 500 µm target diameter but had 

ideal roundness and smoothness.  Thus, the optimal spheroid fabrication technique from this 

study was to aggregate 40K cells under 150 – 300G centrifugation.   
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Previous studies have investigated the use of spheroids to produce scaffold-free tissue 

engineered constructs for cartilaginous tissues, such as articular cartilage, meniscus, 

temporomandibular joint (TMJ), and intervertebral disc31–34, due to the similarities between 

condensation and differentiation that occurs during native cartilage development and the 

formation of the highly cellular spheroids. Cellular spheroids have also been used for scaffold-

free tissue engineered cardiac, liver, skin, neural, intestine, and bone tissues35–39. Although 3D 

spheroids are not a traditional culture condition for osteogenic cells, recent studies have 

suggested that 3D culture is a favorable condition for promoting osteoblast maturity and 

enhanced osteogenic capacity40,41. For example, rat mesenchymal stem cell (rMSC) spheroids 

exhibited more osteogenic potential when compared to monolayer rMSCs. Furthermore, rMSC 

spheroids engrafted in rat calvarial defects demonstrated efficient bone regeneration41. Although 

these spheroids were not characterized or optimized for use in 3D printing, these results 

suggest that scaffold-free, spheroid-based tissue engineering may be a promising technique for 

bone regeneration. 

Additional supplements to the osteogenic medium could enhance differentiation in future 

studies, but care must be taken in selecting growth factors for multipotent stem cells in 3D 

culture. For example, bone morphogenetic proteins (BMPs) possess osteoconductive properties 

that have been extensively studied in both the laboratory and clinic, but they also promote 

chondrogenesis. Reports in the literature demonstrate the multi-potency of BMP-2, BMP-6 and 

BMP-7 in directing osteogenic and chondrogenic differentiation of mesenchymal stem cells42–47. 

BMP-6 in particular has been shown to enhance osteogenesis or chondrogenesis depending on 

the culture conditions; BMP-6 upregulated markers of osteogenesis in adipose-derived 

mesenchymal stem cells in 2D monolayer and induced a chondrogenic response when the cells 

were cultured in 3D spheroids in the same medium48. These results suggest that additional 

supplements to the osteogenic differentiation media should be tested and optimized for 3D 

culture, as they may elicit a distinct response from that of 2D culture. 
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In this study, we optimized the fabrication of BMSC spheroids for bioprinting via the 

Kenzan method with the Regenova 3D printing system.  We also demonstrated that the BMSCs 

undergo osteogenic differentiation in high-density 3D spheroid culture; this is a critical 

preliminary step towards using these cells to generate constructs for bone repair. However, 

when forming a larger construct, it may be necessary to promote spheroid fusion first, then to 

induce osteogenic differentiation.  In the future, this bioprinting system could be used to 

fabricate 3D constructs for cranial reconstruction.  Although the scale and complexity of 

bioprinting is not, at this time, able to replace complete bones, potential short-term applications 

for spheroid-based tissues bioprinted using the Kenzan method include implanting these tissues 

to fill a critical size defect. For these applications, the bioprinted tissues may require longer-term 

maturation and advanced conditioning to ensure they are strong enough to secure in place or 

they may require a supporting matrix to support the tissue. The tissues may also be used as 

fillers in the porous regions of metal or ceramic implants where they may augment implant 

integration with the host bone while the metal or ceramic implants can provide mechanical 

support to the biofabricated tissues. 

5. Conclusion 

 We characterized immortalized murine BMSC spheroids using two methods of cell 

aggregation (gravity or centrifugation) and two types of media (control or osteogenic) to 

generate spheroids for 3D bioprinting on the Regenova scaffold-free printing system. This is an 

important first step prior to proceeding with printing of larger constructs. Overall, our findings 

suggest that BMSCs form viable spheroids with osteogenic gene expression increasing over 

time and elevated levels of alkaline phosphatase activity. BMSC spheroids produced with the 

centrifugation method demonstrated tighter spheroid formation with ideal roundness and 

smoothness. Here it was determined that the optimal spheroid fabrication technique was to 

aggregate 40K cells under 150 – 300G centrifugation. The next steps are to print 3D tissue 
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constructs using the Regenova system, characterize the large tissues prior to implantation in 

cranial defects in mice, and assess bone regeneration in vivo.   
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Figure Legends 
 

Figure 1: The Importance of Spheroid Size 

(a) Optimally-sized 500 µm spheroids are spaced on the Kenzan needle array to facilitate 

spheroid-spheroid contact and thus spheroid fusion. (b) and (c) Oversized spheroids interfere 

with one-another such that each preceding spheroid is pushed out of position during placement 

of adjacent spheroids. This phenomenon reduces dimensional accuracy of the construct and 

undermines bioprinting results. (d) Undersized spheroids do not contact one another and 

therefore do not fuse to one another, resulting in a failed construct. Undersized spheroids are 

also prone to splitting on the Kenzan needles and falling from the array, resulting in gaps in the 

construct.  

Figure 2: Spheroid Diameter 

Diameter of gravity-induced spheroids (a) in control medium at different numbers per well on 

day 3 (n=3). Representative silhouettes of gravity-induced spheroids with Regenova scanner for 

both (b) control and (c) osteogenic media.  Parameters of the exponential decay equation (3) 

were fit to the average spheroid diameter data. Percent cell viability for both control and 

osteogenic spheroids is shown below diameter curve fit (n=4).  

Figure 3: Histology (H&E) 

Upper panel shows the gravity-induced control and osteogenic spheroids at 10X (Bar=100 µm). 

Lower panel shows a representation of control and osteogenic spheroids at 40X (Bar=50 µm). 

Figure 4: mRNA Expression 
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ALP COL (a) Normalized average  mRNA expression over 28 days.  (b) Normalized average 

1A1 OCNmRNA expression over 28 days. (c) Normalized average  mRNA expression over 28 

Eight spheroids were collected per replicate (n=3).days.  (*) represents p values less than 0.05 

when compared to control at the same time point. 

Figure 5: DNA Content  

DNA content over time for both gravity-and centrifugation induced spheroids. ■ Gravity control 

spheroids. ▲Gravity osteogenic spheroids. ● Centrifuged control spheroids. ♦ Centrifuged 

osteogenic spheroids. Four spheroids were collected per replicate (n=3). Data were normalized 

to day 0. The parameters of the exponential decay equation (4) were fit to the DNA kinetic 

profile. 

Figure 6: Diameter on Day 3 

(a) Silhouette representations of gravity- and centrifuge-induced spheroids at two different 

speeds (150G and 300G). Gravity-induced spheroids (n=3). ■ Spheroids made at 150G (n=8). 

■ Spheroids made at 300G (n=8). (b) Diameter (µm) of different cell numbers. (c) Spheroid 

roundness for different cell numbers. (d) Spheroid smoothness for different cell numbers. 

Figure 7: Alkaline Phosphatase Activity  

■ Control spheroids. ■ Osteogenic spheroids. (a) ALP activity normalized to DNA over time for 

gravity induced spheroids. (b) ALP normalized to DNA over time for spheroids formed under 

Four spheroids were collected per replicate (n=3). centrifugation at 300G. (*) represents p 

 values less than 0.05 when compared to control at the same time point.
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