50 research outputs found

    Precision medicine driven by cancer systems biology

    Get PDF
    Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance

    Targeted therapies in colorectal cancer: an integrative view by PPPM

    Get PDF
    In developed countries, colorectal cancer (CRC) is the third most common malignancy, but it is the second most frequent cause of cancer-related death. Clinicians are still faced with numerous challenges in the treatment of this disease, and future approaches which target the molecular features of the disorder will be critical for success in this disease setting. Genetic analyses of many solid tumours have shown that up to 100 protein-encoding genes are mutated. Within CRC, numerous genetic alterations have been identified in a number of pathways. Therefore, understanding the molecular pathology of CRC may present information on potential routes for treatment and may also provide valuable prognostic information. This will be particularly pertinent for molecularly targeted treatments, such as anti-vascular endothelial growth factor therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapy. KRAS and BRAF mutations have been shown to predict response to anti-EGFR therapy. As EGFR can also signal via the phosphatidylinositol 3-kinase (PI3K) kinase pathway, there is considerable interest in the potential roles of members of this pathway (such as PI3K and PTEN) in predicting treatment response. Therefore, a combined approach of new techniques that allow identification of these biomarkers alongside interdisciplinary approaches to the treatment of advanced CRC will aid in the treatment decision-making process and may also serve to guide future therapeutic approaches

    understanding and tackling poverty and vulnerability in mountain livelihoods in the hindu kush himalaya

    Get PDF
    This chapter critically reviews the existing knowledge on livelihoods, poverty, and vulnerability in the Hindu Kush Himalaya (HKH). Development in mountain areas and the practices of people in these areas are uniquely conditioned by distinct characteristics that we term "mountain specificities". Some of these specificities—such as inaccessibility, fragility, and marginality—constrain development. Others—such as abundant biological diversity, ecological niches, and adaptation mechanisms—present development opportunities for mountain people

    Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: impact on future treatment strategies

    Get PDF

    Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma

    No full text
    Abstract Background Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. Methods The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. Results Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family transcription factors. Conclusions The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance. The outcome of this transcriptional plasticity is selection for a set of transcriptional master regulators, which circumvent upstream targeted kinases and provide alternative routes of mitogenic activation. A fine-woven network of redundant signals maintains similar effector genes allowing for tumor cell survival and malignant progression in therapy-resistant cancer

    Retrolumbar subcutaneous ependymoma and giant bathing-trunk nevocellular nevus.

    No full text
    BACKGROUND. Subcutaneous ependymomas have been reported rarely in dermatologic reviews and, apparently, were never associated with other cutaneous malformations. METHODS. A 60-year-old woman with a retrolumbar subcutaneous ependymoma and a giant bathing-trunk nevocellular nevus submitted to thorough dermatologic and neurologic investigation. The surgical material was extensively analyzed with light and electron microscope. The literature was reviewed. RESULTS. The tumor fits exactly the classical prerequisites of the clinical and pathologic diagnosis. In contrast with the literature, it developed at 53 years, apparently after a trauma, within a congenital giant nevocellular nevus, at the retrolumbar level; it proved unrelated to any spinal cord alteration and so far appeared quite benign. CONCLUSIONS. The observation of a retrolumbar subcutaneous ependymoma is reported with detail; this tumor exceptionally recognized by dermatologists must be included in the differential diagnosis of lumps arising in the retrolumbar-retrosacral area. The most peculiar feature was its development within a giant bathing-trunk nevocellular nevus; such a fascinating association of two neurectodermal defects, as far as known, is presented for the first time
    corecore