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Abstract Only approximately 10 % of genetically unselected
patients with chemorefractory metastatic colorectal cancer
experience tumor regression when treated with the anti-
epidermal growth factor receptor (EGFR) antibodies cetuximab
or panitumumab (“primary” or “de novo” resistance). More-
over, nearly all patients whose tumors initially respond inevita-
bly become refractory (“secondary” or “acquired” resistance).
An ever-increasing number of predictors of both primary and
acquired resistance to anti-EGFR antibodies have been de-
scribed, and it is now evident that most of the underlying
mechanisms significantly overlap. By trying to extrapolate a
unifying perspective out of many idiosyncratic details, here,
we discuss the molecular underpinnings of therapeutic resis-
tance, summarize research efforts aimed to improve patient
selection, and present alternative therapeutic strategies that
are now under development to increase response and combat
relapse.
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Introduction

Colorectal cancer is the second commonest cancer worldwide,
and the metastatic disease accounts for up to 20 % of newly

diagnosed patients or further develops in 50% of cases, with a
median overall survival (OS) of approximately 20 months
[1-5].

The clinical outcome of patients with metastatic colorectal
cancer (mCRC) has been improved by the introduction of
cetuximab and panitumumab, two monoclonal antibodies
(moAbs) targeting the epidermal growth factor receptor
(EGFR/ErbB1/HER1), given in combination with chemothera-
py or, when other options are exhausted, as monotherapy [6-8].

EGFR is a member of the ErbB family of receptor tyrosine
kinases (RTKs), which also includes HER2/neu (ERBB2),
HER3 (ErbB3), and HER4 (ErbB4) [9]. EGF or other EGF-
like ligands trigger homo- and hetero-dimerization of EGFR
with other ErbB members, which activates a mitogenic and
antiapoptotic signaling cascade via several pathways, includ-
ing not only the RAS-RAF-MEK-ERK and the PI3K-AKT-
mTOR axes but also SRC family kinases, PLCγ-PKC, and
STATs [9, 10]. Such activation stimulates key processes in-
volved in tumor growth and progression, including prolifera-
tion, angiogenesis, invasion, and metastasis [11] (Fig. 1).

When used as monotherapy in genetically unselected pa-
tients with chemotherapy-refractory mCRC, cetuximab and
panitumumab achieve clinically meaningful response rates
(RRs) of approximately 10 % [7, 8, 12]. Unlike other tumor
types such as non-small cell lung cancers (NSCLCs) or mel-
anomas, in which target mutations are associatedwithmassive
regressions following treatment with specific inhibitors [13,
14], genetic alterations of EGFR are extremely infrequent in
colorectal tumors.

The complex and thin boundary between primary and
acquired resistance is determined by the evidence of an initial
response to treatment. If refractoriness to therapy is present at
baseline, this is defined as primary (also known as de novo)
resistance and can be explained by resistance-conferring fac-
tors preexisting in the bulk of tumor cells. Acquired (or
secondary) resistance refers to disease progression in the face
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of ongoing treatment that was initially effective and can be
caused bymutations arising during treatment as well as through
other various adaptive nongenetic responses [15, 16]. In the
case of colorectal cancer, acquired resistance typically occurs
within 3–18 months after treatment initiation [7, 8].

Starting with seminal observations in 2006–2007 [17, 18], a
large body of evidence has described different biomarkers of
primary resistance to anti-EGFR moAbs in mCRC patients,
leading to exclusion from treatment of a number of molecularly
defined nonresponders [19, 20]. The field of acquired resistance
has received preclinical and clinical attentionmuchmore recent-
ly, with the emergence of new insights only in the last 2 years.

In this review, we will appraise the current knowledge on
primary and acquired resistance to anti-EGFR moAbs in
mCRC, from initial mechanistic exploration to clinical applica-
tions, and will highlight emerging lines of investigation aimed at
improving response and delay relapse in this tumor setting.

Molecular mechanisms of resistance to anti-EGFR
antibodies in patients with metastatic colorectal cancer

In general terms, the commonest mechanisms of resistance to
inhibition of receptor tyrosine kinases (RTKs) involve

genomic alterations affecting downstream effectors, such as
KRAS and PIK3CA mutations, with consequent constitutive
pathway hyperactivation. Notably, the KRAS and PI3K sig-
naling cascades can also be activated by upstream RTKs other
than EGFR [21], leading to an oncogenic shift [22]. In both
cases, the primary drug target remains unaltered and continues
to be inhibited while an alternative signal transducer becomes
activated, bypassing the consequences of EGFR inhibition
[16, 23] (Fig. 2a, b).

Importantly, it is increasingly recognized that tumors can
contain a high degree of genetic and molecular heterogeneity
within the same lesion [24]. Thus, secondary resistance can
arise not only through acquisition of de novo genetic lesions
over the course of therapy but also through treatment-induced
selection of resistant minor subpopulations of cells that are
intrinsically insensitive and already present in the original
tumor [25]. If secondary resistance may be nothing but the
emergence, under drug pressure, of rare tumor subsets featur-
ing primary resistance, then most of the molecular mecha-
nisms of primary and acquired resistance should overlap.
Accordingly, hereinafter, we provide a description of resis-
tance predictors as a whole, specifying for each biomarker
when it has been reported in both cases. We will also focus on
current research efforts aimed at developing alternative strat-
egies to circumvent such resistances in patients with no other

Fig. 1 EGFR signaling pathways. aUpon ligand binding and consequent
homo- and hetero-dimerization, ErbB family members can activate a
number of pathways, including the RAS-RAF-MEK-ERK and the
PI3K-AKT-mTOR axes, the SRC family kinases (SFKs), PLCγ-PKC,

and STATs, driving cell proliferation and/or influencing apoptosis. b By
binding the extracellular domain of EGFR, both cetuximab and
panitumumab prevent ligand-induced activation of downstream signaling
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therapeutic options. Table 1 summarizes the main biomarkers
of primary and acquired resistance observed in mCRC pa-
tients and describes potential alternative strategies proposed
by different approaches.

RAS

The RAS family includes three small GTPases (KRAS,
NRAS, and HRAS) responsible for coupling EGFR to the
RAF/MEK/ERK pathway [22]. Several retrospective analyses
have describedKRASmutations in exon 2 (codons 12 and 13),
which are found in approximately 40–45 % of CRCs [20, 26],
as major determinants of primary resistance to cetuximab or
panitumumab [17, 27-29]. The robust predictive power of
such correlations, despite being obtained in retrospective stud-
ies, was sufficient to convince both the US Food and Drug
Administration and the European Medicines Agency to ap-
prove the use of anti-EGFR moAbs only in the subset of
KRAS wild-type colorectal cancers [26, 30-34].

Although exclusion of patients with KRAS (exon 2)-mutant
tumors has arithmetically increased the percentage of

responders up to 13–17 %, most KRAS wild-type tumors still
do not respond to anti-EGFR moAbs [26, 32]. Additional rare
mutations of KRAS, as well as mutations of NRAS, have been
associated with primary resistance to treatment. The relatively
high cumulative frequency of rare KRASmutations and NRAS
mutations, coupled with initial successful validation in pro-
spective trials, strongly advocates prompt incorporation of
such biomarkers into clinical practice as negative predictors
[35]. Avery low frequency ofKRAS amplification (0.7 %) has
also been reported and found to correlate with primary resis-
tance [36].

KRAS point mutations and gene copy number gains are
responsible not only for primary but also for acquired resis-
tance in 38–60 % of patients who relapse on cetuximab or
panitumumab [37-39]. Intriguingly, such mutations presum-
ably are either present in a clonal subpopulation within the
tumor before treatment initiation [37, 38] or raise as a conse-
quence of continued mutagenesis over the course of therapy
[38, 39]. KRAS alterations could be identified noninvasively
5–10 months before radiographic disease progression by an-
alyzing cell-free circulating tumor DNA (ctDNA) [37, 38].

Fig. 2 Mechanisms of resistance to anti-EGFR moAbs in mCRC. a
Activating mutations of EGFR effectors, such as KRAS (by either point
mutations or gene amplification), BRAF and PI3KCA, or PTEN loss of
function, cause persistent activation of downstream signaling despite
EGFR inhibition. b Aberrant activation (by either receptor gene amplifi-
cation or high ligand levels) of alternative receptors, such as HER2 or
MET (not shown), can bypass EGFR inhibition and mediate downstream
pathway activation. c Additional genetic alterations within the target
oncogene may abrogate drug binding. The EGFR S492R mutation

inhibits cetuximab but not panitumumab binding, mediating acquired
resistance to the former but not the latter in mCRC patients. d Other
mechanisms of resistance may be “pathway independent,” such as altered
angiogenesis (through increased secretion of VEGF or activation of
VEGFR-1/2), dysregulation of EGFR recycling (with consequent in-
crease of EGFR degradation), or tumor-stroma interactions (i.e., through
increased release of antiapoptotic growth factors and cytokines, such as
HGF)

J Mol Med (2014) 92:709–722 711



Table 1 Biomarkers of primary and acquired resistance to anti-EGFR moAbs in mCRC patients and potential alternative therapeutic strategies

Biomarker Scientific approach Alternative strategies proposed References

Primary resistance

KRAS mutations KRAS mutant cell lines in vitro and
in vivo

Combination of EGFR and MEK inhibitors was more
effective than either agent alone in reducing cell
viability in vitro.

[18]

Combination of dasatinib (SFK inhibitor) with cetuximab
induced decreased proliferation and enhanced apoptosis
in vitro, tumor growth delay but not regression in vivo.

[51]

Synthetic lethal interactions in KRAS
mutant cell lines

Mutant KRAS cells exhibited selective sensitivity to
suppression of the mitocondrial apoptosis-regulator
STK33. Studies to develop STK33 inhibitors are
required.

[45]

RAS- mutant cells were sensitive to proteasome and
mitotic perturbations. PLK1 inhibition attenuated tumor
growth in vivo.

[46]

Combined IGF-IR and MEK inhibition induced partial
tumor regression in vivo.

[49]

TAK1 inhibition promoted apoptosis in KRAS-dependent
APC-mutant CRC cells and tumor regression in vivo.

[48]

Proteasome and topoisomerase inhibitors selectively
impaired cell viability (GATA2 and CDC6 could be
potential new targets).

[44]

Combined BCL-XL and MEK inhibition promoted tumor
regression in vivo.

[47]

Patient-derived xenografts of RAS
mutant CRCs

Inhibition of MEK and PI3K/mTOR induced tumor
growth delay but not regression. This strategy may
retard progression in patients.

[43]

BRAF mutations KRAS or BRAF mutant cells, mouse
xenografts and GEMMs.

Combined targeting of BCL-2/BCL-XL and TORC1/2
induced selective apoptosis in vitro and tumor
regression in vivo.

[50]

BRAF V600E CRC models Combined BRAF and EGFR inhibition was synergistic in
vitro and in vivo.

[52, 58, 59]

Calfizomib (proteasome inhibitor) reduced cell viability
in vitro and suppressed tumor growth in vivo.

[64]

Cell lines with concurrent PIK3CA
mutations or PTEN loss/BRAF
V600E GEMMs

Combination therapy with BRAF and PI3K inhibitors
induced apoptosis in vitro, delayed tumor growth
in vivo and caused tumor regression in GEMMs.

[60, 62, 63]

PIK3CA mutations or PTEN
loss

Cells carrying PIK3CAmutations or
PTEN loss but not BRAF/KRAS
mutations

Adjuvant low-dose aspirin in PIK3CA-mutant patients
improved survival. Further prospective studies are
required.

[85, 86]

HER2 amplification HER2-amplified patient-derived
xenografts

Combination of cetuximab/pertuzumab with lapatinib
induced overt long-lasting tumor regression.

[91]

MET activation HGF-overexpressing cells Co-treatment with cetuximab and MET inhibitors induced
marked tumor regression of HGF-overexpressing cells
in vivo.

[105]

MET amplified patient-derived
xenografts

MET inhibition achieved long-lasting abolition of tumor
growth in vivo.

[104]

Acquired resistance

EGFR mutations Mutations in the EC domain
(S492R) and in the kinase domain
(codons 714 and 794) of EGFR
found in patients

Panitumumab remained active in a patient with S492R
mutation, which abrogated cetuximab binding.

[41, 109]

RAS/BRAF activation CRC cell lines with acquired KRAS/
BRAF point mutations and/or
KRAS amplification and one
patient-derived xenograft

Combination of cetuximab with pimasertib (MEK
inhibitor) induced moderate tumor shrinkage in vivo.

[40]

HER2 activation Cells with high heregulin levels or
HER2 amplification

Pertuzumab/lapatinib restored sensitivity to cetuximab
in vitro.

[92]

MET activation MET amplified patient-derived
xenografts

Combined inhibition of MET and EGFR induced long-
lasting disease stabilization in vivo

[104]
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Using this approach, two recent studies have highlighted the
emergence of several independent clones carrying heteroge-
neous patterns of KRAS and NRAS mutations concomitantly
associated with acquired resistance to EGFR blockade [40, 41].

Currently, KRAS-mutant patients are treated with chemo-
therapy (with or without antiangiogenic therapy using the anti-
VEGF moAb bevacizumab), but if intensive regimens are not
tolerated or relapse occurs, the remaining treatment option is
best supportive care [42]. To date, direct inhibitors of mutant
KRAS protein are not yet available; therefore, multiple efforts
have been made at the preclinical level by approaches as
different as targeting downstream effectors such as MEK
and PI3K [43], exploiting synthetic lethal interactions
[44-49] or using high-throughput drug screens [50]. Of note,
most of these studies showed that simultaneous targeting of
two different pathways induced some responses in KRAS
mutant CRC mouse models, albeit rarely with overt tumor
regressions [51] (see Table 1); most of these approaches are
currently under evaluation in phase I/II clinical trials
(NCT01085331, http://clinicaltrials.gov/ct2/show/
NCT01 0 8 5 3 3 1 ? t e rm=NCT010 8 5 3 3 1& r a n k= 1;
NCT01390818, http://clinicaltrials.gov/ct2/results?term=
NCT01390818&Search=Search; NCT02039336, http://
c l in ical t r ia ls .gov/ct2/show/NCT02039336?term=
NCT02039336&rank=1). In the case of secondary resistance
due to RASmutations, preclinical evidence suggests that early
initiation of a combinational targeting of EGFR and MEK
could delay or reverse the emergence of resistance [40].

BRAF

Mutations of BRAF, which encodes the cytoplasmic serine/
threonine kinase immediately downstream of RAS, are found
in 4–13 % of advanced CRCs and are usually mutually
exclusive with KRAS mutations [20, 52].

The BRAF V600E mutation has been described as a pre-
dictor of tumor aggressiveness in metastatic disease [33, 52,
53] and also of low RRs to cetuximab and panitumumab [18,
20, 52, 53]. However, the predictive impact of BRAF muta-
tions is tempered by their low prevalence and is further biased
by the prominent role of mutant BRAF as a negative prognos-
tic biomarker [54]. Overall, the predictive power of this alter-
ation remains immature and requires further prospective en-
dorsement before clinical applicability [20, 33, 52, 55].

Although, unlike RAS, BRAF can be efficiently blocked by
clinically approved small-molecule inhibitors, no targeted ther-
apeutic options are currently available for BRAF mutant CRC.
In contrast to dramatic responses obtained in BRAF V600E-
mutant melanomas (RR of 48 to 67 %) [13, 56], selective
BRAF inhibitors such as vemurafenib have failed in BRAF-
mutant CRCs (RR of 5 %) [57]; this lack of efficacy has been
ascribed to the feedback activation of EGFR, which ensues as a
consequence of BRAF inactivation and leads to EGFR-

dependent compensatory signals [58, 59]. Accordingly, preclin-
ical studies have provided a proof of principle that the com-
bined inhibition of EGFR and BRAF can be synergistic in
BRAF-mutant CRCs; however, it is worth noting that the best
responses of CRC cell xenografts to such combinations were
only disease stabilizations or mild tumor regressions [52,
58-60]. At the clinical level, a recent case report sustained the
rationale of combined therapy with vemurafenib and cetuximab
in BRAF V600E-mutant mCRC patients [61], and a pilot study
of vemurafenib and panitumumab in this disease setting is
currently recruiting participants (NCT01791309, http://
clinicaltrials.gov/ct2/results?term=NCT01791309&Search=
Search). From the diagnostic viewpoint, the feedback activation
of EGFR upon BRAF inhibition likely implies that EGFR
expression and phosphorylation levels may be potential
predictors of response to vemurafenib monotherapy in BRAF-
mutant mCRC patients [58, 59]. Other combinatorial
approaches needing further testing or already under clinical
evaluation [50, 62-64] are listed in Table 1.

BRAF mutations could be also detected noninvasively by
ctDNA analysis, together with concomitant KRAS and NRAS
mutations [40, 41], in patients who objectively responded to
anti-EGFR therapy but subsequently relapsed. This indicates
that the emergence of BRAF-mutant-resistant subclones also
sustains secondary resistance.

PI3K-AKT-PTEN pathway

PI3Ks are a family of lipid kinases; in particular, class IA
PI3Ks can be activated by different RTKs [65], but also
through RAS association [66] or signaling from G protein-
coupled receptors [9].

Class IA PI3Ks consist of heterodimeric proteins com-
posed of a regulatory (p85) and a catalytic (p110) subunit
[67]. Activating mutations of PIK3CA (encoding p110α) have
been found in 10–20 % of CRCs [20, 68-70]; most of them
occur in exons 9 and 20, respectively, in the helical and kinase
domain [68, 71]. Sartore-Bianchi and colleagues performed a
retrospective analysis of 110 mCRC patients treated with
cetuximab or panitumumab, reporting a statistically signifi-
cant association between PIK3CA mutations and primary
resistance to treatment within KRAS wild-type tumors. In this
study, 11 out of 15 mutations were found in exon 20 (73.3 %)
and only 4 in exon 9 (26.7 %) [72]. Another study, in which a
majority of exon 9 mutations was reported, did not confirm
such correlation [70]. These conflicting reports were then
reconciled by a large retrospective consortium analysis on
1,022 tumor samples which showed that, in the KRAS wild-
type subpopulation, only PIK3CA exon 20 mutations may be
predictive of lack response to cetuximab (RR of 0 % inmutant
vs 36.8 % in wild-type cases) [20]. This study also described a
strong association between PIK3CA exon 9 (but not exon 20)
mutations and KRAS mutations, suggesting the lack of
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independent influence of PIK3CA exon 9 mutations on
cetuximab efficacy.

Loss of function of PTEN, which antagonizes PI3K activ-
ity, occurs in 30 % of sporadic CRCs through a variety of
mechanisms [73, 74]. PTEN inactivation (usually assessed as
lack of protein expression) has been associated with
nonresponsiveness to anti-EGFR moAbs in mCRC patients
in several studies [19, 73, 75, 76], whereas others have only
reported a prognostic role [53]. In summary, both PIK3CA
exon 20mutations and loss of PTEN expression are promising
predictors of tumor suitability for anti-EGFR therapies. How-
ever, due to the low incidence of exon 20 mutations (2–5 %)
[77] and lack of a consensus method for PTEN expression
analysis [20, 73, 76, 78, 79], further prospective trials are
required to challenge the clinical utility of PI3K pathway
activation as a negative response predictor.

In principle, patients harboring PIK3CAmutations or PTEN
loss of function, without concomitant KRAS/BRAF mutations,
may benefit from targeted treatments against PI3K or PI3K-
downstream effectors such as mTOR or AKT [80]; however,
emerging clinical data have shown only minimal single-agent
activity of such inhibitors at tolerated doses [81-83]. It is likely
that mTOR kinase, AKT, pan-PI3K, or isoform-specific PI3K
inhibitors will provide greater therapeutic index when com-
bined with RTK inhibitors [84]. Phase I/II studies testing
mTOR inhibitors, such as everolimus or temsirolimus, in com-
bination with RTK inhibitors or anti-EGF moAbs plus chemo-
therapy in mCRC patients are underway (NCT01154335,
http://clinicaltrials.gov/ct2/show/NCT01154335?term=
colorectal+cancer&rank=33; NCT01139138, http://
clinicaltrials.gov/ct2/show/NCT01139138?term=colorectal+
cancer&rank=67; NCT01387880, http://clinicaltrials.gov/ct2/
show/NCT01387880?term=everolimus+AND+colorectal+
cancer&rank=2; NCT00827684, http://clinicaltrials.gov/ct2/
show/NCT00827684?term=everolimus+AND+colorectal+
cancer&rank=9).

Finally, recent observational studies have shown that adju-
vant low-dose aspirin improved survival in patients with
PIK3CA-mutant tumors [85-87]; this sensitivity requires fur-
ther prospective evaluation and could be at least partially
explained by the fact that PI3K-AKT seems to induce
NF-ĸB-dependent transcriptional upregulation of COX2,
which has been demonstrated to display pro-survival activity
in CRC cells [87-89]. Therefore, a PIK3CA-mutant context
may render CRC cells susceptible to apoptosis by aspirin-
mediated COX2 inhibition.

To our knowledge, no alterations in the PI3K/AKT path-
way have been associated with acquired resistance thus far.

HER2

It has been calculated that, among nonresponsive patients,
70 % bear tumors harboring at least one genetic alteration in

the four abovementioned markers: KRAS, NRAS, BRAF, and
PIK3CA [19]; therefore, the remaining 30 % of “quadruple
negative” resistant cases display still-unidentified features that
sustain lack of response.

HER2 is the only member of the ErbB family that does not
bind ligands; it is activated via hetero-dimerization with the
other ligand-bound receptors [10], with the strongest mitogen-
ic signals created by HER2-HER3 heterodimers; HER2 over-
expression, usually caused by gene amplification, allows
HER2 activation even in the absence of ligand bound to the
other partners [90].

Two independent studies have recently shown that HER2
amplification is a predictor of poor sensitivity to anti-EGFR
antibodies [91, 92]. By performing genotype-response corre-
lations in a preclinical platform of patient-derived metastatic
CRC xenografts (xenopatients), Bertotti and colleagues iden-
tified HER2 amplification as a biomarker of resistance to
cetuximab within a quadruple negative population. Concom-
itantly, using a combination of resistant clones from
cetuximab-sensitive cell lines and plasma and tissue samples
from cetuximab-treated mCRC patients, Yonesaka and col-
leagues reported aberrant HER2 signaling (by either HER2
amplification or through overproduction of the HER3-
activating ligand heregulin) as a mediator of lack of response
[92]. In retrospective studies, patients with tumors featuring
HER2 amplification or heregulin overexpression and treated
with cetuximab or panitumumab experienced disease progres-
sion and shorter progression-free and overall survival com-
pared with HER2 wild-type cases [91-93].

Interestingly, in patients with acquired resistance, HER2
amplification was present in a small percentage of pretreat-
ment tumor cells (14 %) that considerably increased in post-
treatment samples (71 %). Similarly, heregulin levels, evalu-
ated both in plasma and tumor specimens, were found to be
significantly higher in patients that relapsed on anti-EGFR
therapy [92]. This indicates that enhanced HER2 signaling
confers both primary and acquired resistance.

Active HER2 also contributes to unleashing the oncogenic
properties of HER3 mutations, which have been recently
identified in about 11 % of colon cancers [94]. A “dosage
effect” may be envisioned whereby low-grade HER2 amplifi-
cation or low levels of heregulin, which alone would be
insufficient to sustain therapeutic resistance, might in fact
decrease responsiveness to EGFR inhibition by collaborating
with coexisting HER3 mutations. Anti-HER3 antibodies and
small molecules are now available and have been shown to
effectively impair HER3-mediated signals and tumor progres-
sion in preclinical studies in vivo [94]. Therefore, HER3
mutations in CRC deserve further exploration as new potential
biomarkers of resistance to EGFR targeted therapies as well as
new predictors of response to alternative treatment options.

Therapeutically, only the dual targeting of HER2 and
EGFR by combining a small-molecule inhibitor, such as the
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dual EGFR/HER2 inhibitor lapatinib, with a moAb, such as
cetuximab or pertuzumab, induced overt and long-lasting tumor
regressions in proof-of-concept trials in HER2-amplified
xenopatients [91]. This finding led to the design and execution
of a clinical trial that is currently assessing the activity and
efficacy of a trastuzumab-lapatinib combination in mCRC pa-
tients with KRAS wild-type, HER2-amplified, cetuximab-
resistant tumors (https://www.clinicaltrialsregister.eu/ctr-search/
trial/2012-002128-33/IT). A similar study, in which a
combination of trastuzumab and irinotecan was tested in
patientswithHER2-overexpressing advanced colorectal cancers,
has been recently completed (NCT00003995, http://clinicaltrials.
gov/ct2/results?term=NCT00003995&Search=Search). It is
likely that also heregulin-driven tumors lacking HER2 amplifi-
cation may benefit from HER2-directed therapies [92, 95, 96],
although the definition of proper cutoff levels for ligand expres-
sion will be necessary before starting further clinical studies.

MET

The RTK MET and its ligand, hepatocyte growth factor
(HGF), can activate a number of pathways, including the
RAS-BRAF-ERK cascade, the PI3K-AKT axis, SRC, and
STAT signaling [97]; these signaling networks collectively
influence multiple key processes in cancer such as prolifera-
tion, apoptosis, invasion, and angiogenesis [98, 99]. Aberrant
activation of MET may occur by several mechanisms, includ-
ing MET amplification and/or increased HGF expression/
activity [97], and has been widely described as a cause of
both primary and acquired resistance to EGFR inhibitors in
NSCLCs carrying EGFR mutations [100-102].

HGF-inducedMETactivation as a mechanism of attenuated
sensitivity to cetuximab in CRC has been reported by preclin-
ical studies using either CRC cell lines [103, 104] or, more
recently, CRC spheroids enriched in cancer stem cells [105]. In
these studies, only the simultaneous blockade of bothMETand
EGFR effectively impaired tumor growth in vivo. Based on
publicly available gene expression data, cetuximab resistance
mediated by HGF overexpression may be also relevant in
mCRC patients [105]. However, similar to that discussed for
heregulin, the investigation of such candidate biomarker re-
quires the definition of methods and the categorization of
expression cutoffs before further clinical evaluations.

The role of MET amplification as a mechanism of primary
resistance to cetuximab and panitumumab in mCRC patients
has been recently elucidated by Bardelli and colleagues [104].
METamplification was retrospectively found in around 1% of
mCRC samples, in line with previous reports [106]. However,
this frequency increased to 12.5 % in a subpopulation of
cetuximab-resistant xenopatients bearing wild-type forms of
KRAS, NRAS, BRAF, PIK3CA, and HER2. Notably, only
focal, high-grade amplification of the MET locus associated
with lack of response; conversely, cetuximab proved to be

active in tumors with modest gene copy number gains or
polysomy of chromosome 7, where the MET gene lies [106].
This suggests that resistance is driven by a dosage effect.
Multi-arm preclinical trials in MET-positive CRC cell lines
and patient-derived xenografts revealed that long-lasting abo-
lition of tumor growth could be achieved through MET inhi-
bition, with or without concurrent interception of EGFR [104,
107]. In coherence, a phase II clinical trial with the primary
objective to assess the antitumor efficacy of the dual MET-
ALK inhibitor crizotinib in patients with solid tumors (includ-
ing CRCs) harboring MET alterations is currently recruiting
participants (NCT02034981, http://clinicaltrials.gov/ct2/
results?term=NCT02034981&Search=Search).

MET amplification was also found in three out of seven
patients who developed acquired resistance, showing mutual
exclusivity with secondary KRAS mutations. Of note, the
MET amplicon was detected in circulating, cell-free DNA as
early as 3 months after initiation of therapy, before relapse was
clinically evident. Like HER2 amplification and KRAS muta-
tions, rare MET-amplified cells were found in pretreatment
tumor material from one out of three patients with MET-
driven acquired resistance, suggesting that preexisting clones
were selected under the pressure of anti-EGFR therapy.

EGFR

Additional genetic alterations within the target oncogene it-
self, which prevent drug binding and lead to kinase activation
even in the presence of the inhibitor, are a common mecha-
nism of both primary and acquired resistance in cancer; a
paradigmatic example is provided by the T790M “gatekeep-
er” secondary mutation in the EGFR gene, which installs
resistance to reversible EGFR inhibitors in EGFR-mutant
NSCLC [108]. In colorectal cancer patients, a mutation in
the extracellular domain of EGFR (S492R), which abrogates
cetuximab binding but retains panitumumab sensitivity, has
been recently described as a mechanism of acquired resistance
[109, 110] (Fig. 2c). Two mutations in the EGFR kinase
domain (codons 714 and 794), which were not detected before
EGFR blockade, were identified as circulating mutations by
cell-free DNA analysis. Although the functional relevance of
these alterations in affecting sensitivity to anti-EGFR moAbs
remains to be determined, it is conceivable that they contribute
to the onset of secondary resistance [41].

Other potential biomarkers of drug sensitivity
and resistance

The step forward into refining mCRC patient stratification
presumably will be the validation of new candidate positive
and negative predictors of response to EGFR moAbs. Increased
EGFR gene copy number could predict response among KRAS
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wild-type patients [53, 91, 111-113], butEGFR FISH inmCRCs
still needs interlaboratory standardization [75, 114, 115].

Different EGFR-specific ligands could differently influ-
ence the clinical activity of cetuximab: while high mRNA
levels of either amphiregulin or epiregulin may predict a better
response [21, 116-119], high levels of TGF-α as well as HB-
EGF could confer lack of sensitivity [107, 118]. These find-
ings, together with the role of other growth factors mentioned
in this review, i.e., HGF, sustain the potential but understudied
contribution of tumor-stromal interactions in influencing drug
response in mCRCs [104, 120, 121].

Controversial data have been reported regarding the predic-
tive role of a number of prognostic biomarkers: for example,
IGF-1R overexpression seems to be a favorable prognostic
factor [79, 106, 122] while high levels of EphA2, a pro-
angiogenic RTK [123, 124], have been associated with poor
outcome in mCRC patients treated with cetuximab-based ther-
apy [125]. Biologically, altered tumor angiogenesis as a way to
escape cetuximab antitumor activity has been previously re-
ported in CRC cellular models and ascribed to either VEGF
protein overexpression or increased VEGFR-1 and VEGFR-2
activation [126, 127]; taken together, these findings suggest
that increased expression of pro-angiogenic ligands and cog-
nate receptors (including VEGFs, VEGFRs, and Eph recep-
tors) may dictate sensitivity to anti-EGFR therapy in colorectal
tumors. Other “pathway-independent” mechanisms could also
have a role in modifying drug response, for example, deregu-
lation of EGFR ubiquitination which affects receptor recycling
and expression at the cell membrane [128] (Fig. 2d).

Ongoing research and challenges

New therapeutic opportunities are currently being offered by
genome-scale analyses of CRCs: recurrent mutations, rear-
rangements, and copy-number alterations have been proposed
as therapeutically actionable drivers of colorectal tumorigen-
esis [129, 130] and will receive further biological validation
by future integrated proteogenomics [131]. Promising hints
are also emerging from treatments aimed at disrupting im-
mune evasion strategies. As a means to instigate immune
suppression, tumor cells often engage immune checkpoint
molecules, such as CTLA-4 and PD1, which downregulate
pathways of T cell activation. Antibodies against CTLA-4
(ipilimumab) or PD1 (nivolumab) have been shown to induce
quick and intense tumor regression in melanoma and NSCLC
patients and are currently under clinical investigation in other
solid tumors, including CRC [132, 133] (NCT01975831,
http://clinicaltrials.gov/ct2/show/NCT01975831).

Although an ever-increasing number of primary and ac-
quired resistance mechanisms have been described until now,
mutant KRAS is the only validated biomarker in routine

practice for selection of mCRC patients to be treated with
EGFR-targeted therapies. Thereby, there is a need to develop
new models for clinical trials in order to facilitate and accel-
erate the introduction of other potentially useful biomarkers
into clinical practice. Translational research in this context has
an unquestionable role. Despite the lack of defined successful
endpoints for preclinical models [134], arrest of cell growth
and induction of apoptosis in vitro, and especially tumor
regression in vivo (ideally in patient-derived xenografts),
could have great impact to help design new cancer drug trials.
Basket trials, in which patients are treated with different
regimens based on their specific genetic profiles, may also
optimize outcomes.

Further trial shaping could be provided by genomic analy-
sis from serial biopsies to monitor response evolution and
acquisition of genetic or adaptive resistance. However, tumor
biopsy may not be representative of the intratumoral and
intermetastatic heterogeneity and posttreatment tumor tissue
is almost invariably unavailable. Such limitations could be
overcome by less-invasive analysis of circulating tumor DNA,
which can offer a high degree of sensitivity and specificity to
monitor the emergence of drug resistance during the course of
treatment [41, 135]. The mechanisms by which ctDNA is
released into the circulation and whether multiple metastases
shed ctDNA homogeneously are still unclear; however, the
proof of principle that such an approach could complement
tumor biopsy and provide an early warning of acquired resis-
tance has been established [38, 41, 136].

One way for cancer to escape therapy is by continuous
adaptation to the selective pressure of the drug, mainly
through tumor genetic heterogeneity and biochemical or tran-
scriptional activation of compensatory feedback loops [137];
exploiting these observations to create a “balance” between

PRIMARY RESISTANCE ACQUIRED RESISTANCE
RAS

BRAF

PI3K (exon 20)

PTEN

HER2

MET

EGFR

Fig. 3 Overlap between molecular biomarkers of primary and acquired
resistance in mCRC. Most of the primary and acquired mechanisms of
resistance to EGFR-targeted therapies in mCRC overlap. To date, no
alterations of the PI3K pathway have been associated with acquired
resistance; on the contrary, EGFR mutations have never been detected
before exposure to EGFR monoclonal antibodies
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drug activity and graded responsiveness of different clones
could be useful to delay the onset of resistance and, ideally, to
turn cancer into a chronic disease. In this scenario, the lessons
learned from metronomic treatment strategies for BRAF
V600Emelanomas as well as EGFR-mutant NSCLCs suggest
that discontinuous dosing of the drug could be a strategy to
prevent or retard acquired resistance [138, 139].

Early detection of disease progression calls for hypothesis-
driven approaches to contrast outcompetition by subclones
exhibiting resistance-conferring mutations. Nonetheless, re-
sistance is pervasive, and observations so far let us conclude
that, in most cases, progression to alternative strategies of drug
elusion will inevitably occur [109, 140]. Thereby, there is a
need to design adaptive drug combinations to achieve tumor
response, reduce chances of relapse, and prolong patient sur-
vival. In line with this, bioinformatics and systems biology
approaches interrogating the huge amount of patient datasets
produced until now may provide models and signatures that
are more comprehensive and predictive than themutation status
alone [21, 141, 142]. Rational combination therapies guided by
real-time monitoring of tumor evolution along treatment,
coupled with integrated omics approaches, will ultimately in-
form trial design to improve patients care in the coming years.

Final remarks

A decade after the introduction of cetuximab in the treatment
of mCRC, much is known about the genetic determinants of
primary resistance to anti-EGFR moAbs and initial insights
are emerging about the mechanisms underlying acquisition of
secondary resistance. The unifying concept is that the very
same genetic alterations that account for intrinsic refractori-
ness also appear to foster progressive lack of response along
treatment (Fig. 3), likely due to the presence of preexisting
drug-insensitive subclones that are positively selected by con-
tinuous EGFR blockade. Future studies are needed to address
cogent issues such as modeling tumor heterogeneity along
cancer progression and under drug pressure, designing ratio-
nal combination therapies to target concurrent mutations in the
same cells or in different subpopulations, and improving early
detection of disease progression.
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