2,660 research outputs found

    A versatile all-channel stimulator for electrode arrays, with real-time control

    Get PDF
    Over the last few decades, technology to record through ever increasing numbers of electrodes has become available to electrophysiologists. For the study of distributed neural processing, however, the ability to stimulate through equal numbers of electrodes, and thus to attain bidirectional communication, is of paramount importance. Here, we present a stimulation system for multi-electrode arrays which interfaces with existing commercial recording hardware, and allows stimulation through any electrode in the array, with rapid switching between channels. The system is controlled through real-time Linux, making it extremely flexible: stimulation sequences can be constructed on-the-fly, and arbitrary stimulus waveforms can be used if desired. A key feature of this design is that it can be readily and inexpensively reproduced in other labs, since it interfaces to standard PC parallel ports and uses only off-the-shelf components. Moreover, adaptation for use with in vivo multi-electrode probes would be straightforward. In combination with our freely available data-acquisition software, MeaBench, this system can provide feedback stimulation in response to recorded action potentials within 15 ms

    Developmentally regulated multisensory integration for prey localization in the medicinal leech

    Get PDF
    Medicinal leeches, like many aquatic animals, use water disturbances to localize their prey, so they need to be able to determine if a wave disturbance is created by prey or by another source. Many aquatic predators perform this separation by responding only to those wave frequencies representing their prey. As leeches' prey preference changes over the course of their development, we examined their responses at three different life stages. We found that juveniles more readily localize wave sources of lower frequencies (2 Hz) than their adult counterparts (8–12 Hz), and that adolescents exhibited elements of both juvenile and adult behavior, readily localizing sources of both frequencies. Leeches are known to be able to localize the source of waves through the use of either mechanical or visual information. We separately characterized their ability to localize various frequencies of stimuli using unimodal cues. Within a single modality, the frequency–response curves of adults and juveniles were virtually indistinguishable. However, the differences between the responses for each modality (visual and mechanosensory) were striking. The optimal visual stimulus had a much lower frequency (2 Hz) than the optimal mechanical stimulus (12 Hz). These frequencies matched, respectively, the juvenile and the adult preferred frequency for multimodally sensed waves. This suggests that, in the multimodal condition, adult behavior is driven more by mechanosensory information and juvenile behavior more by visual. Indeed, when stimuli of the two modalities were placed in conflict with one another, adult leeches, unlike juveniles, were attracted to the mechanical stimulus much more strongly than to the visual stimulus

    Persistent dynamic attractors in activity patterns of cultured neuronal networks

    Get PDF
    Three remarkable features of the nervous system—complex spatiotemporal patterns, oscillations, and persistent activity—are fundamental to such diverse functions as stereotypical motor behavior, working memory, and awareness. Here we report that cultured cortical networks spontaneously generate a hierarchical structure of periodic activity with a strongly stereotyped population-wide spatiotemporal structure demonstrating all three fundamental properties in a recurring pattern. During these "superbursts," the firing sequence of the culture periodically converges to a dynamic attractor orbit. Precursors of oscillations and persistent activity have previously been reported as intrinsic properties of the neurons. However, complex spatiotemporal patterns that are coordinated in a large population of neurons and persist over several hours—and thus are capable of representing and preserving information—cannot be explained by known oscillatory properties of isolated neurons. Instead, the complexity of the observed spatiotemporal patterns implies large-scale self-organization of neurons interacting in a precise temporal order even in vitro, in cultures usually considered to have random connectivity

    The precarious politics of public innovation

    Get PDF
    This article argues that debates about public innovation among governance scholars risk essentialising the concept. Rather than recognise the inherently normative content of public innovation, some scholars have created taxonomies that conflate very different forms of ‘innovation’ in the public and private sectors, the latter of which is deeply contradictory to public values. We re-think public innovation as both a pragmatic process, a way of responding to developments in contemporary governance, and an inherently public and democratic practice. Our analysis addresses three points: who innovates; what is the object of innovation, and what are the effects of innovation? From this analysis we specify public innovation as both inescapable and democratically necessary to safeguard and promote the important values of public life

    Spin-mediated dissipation and frequency shifts of a cantilever at milliKelvin temperatures

    Get PDF
    We measure the dissipation and frequency shift of a magnetically coupled cantilever in the vicinity of a silicon chip, down to 2525 mK. The dissipation and frequency shift originates from the interaction with the unpaired electrons, associated with the dangling bonds in the native oxide layer of the silicon, which form a two dimensional system of electron spins. We approach the sample with a 3.433.43 μ\mum-diameter magnetic particle attached to an ultrasoft cantilever, and measure the frequency shift and quality factor as a function of temperature and the distance. Using a recent theoretical analysis [J. M. de Voogd et al., arXiv:1508.07972 (2015)] of the dynamics of a system consisting of a spin and a magnetic resonator, we are able to fit the data and extract the relaxation time T1=0.39±0.08T_1=0.39\pm0.08 ms and spin density σ=0.14±0.01\sigma=0.14\pm0.01 spins per nm2^2. Our analysis shows that at temperatures 500\leq500 mK magnetic dissipation is an important source of non-contact friction.Comment: 5 pages, 3 figure

    Minimum drinking age laws effects on American youth 1976-1987

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/137895/1/occ28.pd

    Evolving views on the first two ligands of the angiotensin II type 2 receptor. From putative antagonists to potential agonists?

    Get PDF
    The renin-angiotensin system is one of the most complex regulatory systems that controls multiple organ functions. One of its key components, angiotensin II (Ang II), stimulates two G-protein coupled class A receptors: the Ang II type 1 (AT1) receptor and the Ang II type 2 (AT2) receptor. While stimulation of the AT1 receptor causes G-protein-dependent signaling and arrestin recruitment, the AT2 receptor seems to have a constitutively active-like conformation and appears to act via G-protein-dependent and -independent pathways. Overstimulation of the AT1 receptor may lead to unwanted effects like inflammation and fibrosis. In contrast, stimulation of the AT2 receptor leads to opposite effects thus restoring the balance. However, the role of the AT2 receptor has become controversial due to beneficial effects of putative AT2 receptor antagonists. The two first synthetic AT2 receptor-selective ligands, peptide CGP42112 and small molecule PD123319, were initially both considered antagonists. CGP42112 was subsequently considered a partial agonist and it was recently demonstrated to be a full agonist. Based on the search-term PD123319 in Pubmed, 1652 studies have investigated putative AT2 receptor antagonist PD123319. Here, we put forward literature that shows beneficial effects of PD123319 alone, even at doses too low for antagonist efficacy. These beneficial effects appear compatible with agonist-like activity via the AT2 receptor. Taken together, a more consistent image of a therapeutic role of stimulated AT2 receptor emerges which may clarify current controversies.</p
    corecore