4 research outputs found

    Are low tolerable upper intake levels for vitamin a undermining effective food fortification efforts?

    Get PDF
    Vitamin A deficiency (VAD) is a major health problem, particularly in low-resource countries, putting an estimated 125-130 million preschool-aged children at increased risk of morbidity and mortality from infectious diseases. Vitamin A supplementation reduces VAD and increases child survival; it is complemented by fortifying foods with vitamin A. Concern over increased risk of bone fracture associated with vitamin A intakes below the tolerable upper intake level (UL) among populations in affluent countries conflicts with the need to increase intakes in less developed countries, where populations are at greater risk of VAD and intakes are unlikely to reach the UL as diets include fewer foods containing retinol while vitamin A from carotenoids poses no risk of overdose. With the implementation of recently developed risk management tools, vitamin A can be used safely in food fortification, including point-of-use fortification in the context of supplementation among specific target groups in low-resource countrie

    Effects on hepatocellular carcinoma of doxorubicin-loaded immunoliposomes designed to target the VEGFR-2

    No full text
    To maintain a tumour vasculature in proportion of the tumour growth, the endothelial cells proliferate and up-regulate the expression of the VEGF receptor 2 (VEGFR-2), whose expression is restricted to this cell type. This specificity implies that one therapeutically target the tumour endothelium. We investigated the use of immunoliposomes (IL), containing conjugated Fab' fragments of the monoclonal rat anti-VEGFR-2 antibody DC101 (DC101-IL) to cargo doxorubicin to the tumour endothelium. In vitro, fluorescein-labelled IL displayed a 7 fold better binding to VEGFR-2-positive 293T cells in comparison to unspecific liposomes. Balb/C mice were injected subcutaneously with syngeneic hepatocellular carcinoma cells. One set of animals was treated with DC101-IL filled with doxorubicin when the tumours were bigger than 400 mm3. A specific delivery of doxorubicin to endothelial cells of the tumour vessels could be demonstrated by the red fluorescence of doxorubicin with laser scanning microscopy, but neither a delay of tumour growth nor a shrinking of the tumour mass was observed. Yet necrosis in the tumours treated with doxorubicin containing vehicles was larger than in the tumours of the control groups. A second set of animals was treated with DC101-IL filled with doxorubicin when the tumours were smaller than 1 mm3. DC101-IL filled with doxorubicin led to a significant delay in tumour growth up to 7 weeks compared to empty DC101-IL, free doxorubicin, and HEPES/Glucose (HEPES/Glucose vs. DOX-DC101-IL, p = 0.001; unpaired, two-tailed Student's t-test) and to a higher amount of necrotic areas in the tumours (p = 0.053; 1 way ANOVA with 4 groups). These findings suggest that IL designed to bind specifically to VEGFR-2 can be used to deliver doxorubicin to the tumour endothelium and may impair the "angiogenic switch" of the tumours

    Are low tolerable upper intake levels for vitamin A undermining effective food fortification efforts?

    Full text link
    Vitamin A deficiency (VAD) is a major health problem, particularly in low-resource countries, putting an estimated 125-130 million preschool-aged children at increased risk of morbidity and mortality from infectious diseases. Vitamin A supplementation reduces VAD and increases child survival; it is complemented by fortifying foods with vitamin A. Concern over increased risk of bone fracture associated with vitamin A intakes below the tolerable upper intake level (UL) among populations in affluent countries conflicts with the need to increase intakes in less developed countries, where populations are at greater risk of VAD and intakes are unlikely to reach the UL as diets include fewer foods containing retinol while vitamin A from carotenoids poses no risk of overdose. With the implementation of recently developed risk management tools, vitamin A can be used safely in food fortification, including point-of-use fortification in the context of supplementation among specific target groups in low-resource countrie
    corecore