2,117 research outputs found
Two-photon interference between disparate sources for quantum networking
Quantum networks involve entanglement sharing between multiple users.
Ideally, any two users would be able to connect regardless of the type of
photon source they employ, provided they fulfill the requirements for
two-photon interference. From a theoretical perspective, photons coming from
different origins can interfere with a perfect visibility, provided they are
made indistinguishable in all degrees of freedom. Previous experimental
demonstrations of such a scenario have been limited to photon wavelengths below
900 nm, unsuitable for long distance communication, and suffered from low
interference visibility. We report two-photon interference using two disparate
heralded single photon sources, which involve different nonlinear effects,
operating in the telecom wavelength range. The measured visibility of the
two-photon interference is 80+/-4%, which paves the way to hybrid universal
quantum networks
Do childhood cognitive ability or smoking behaviour explain the influence of lifetime socio-economic conditions on premature adult mortality in a British post war birth cohort?
Poor childhood and adult socio-economic conditions, lower childhood cognitive ability and cigarette smoking are all associated with adult mortality risk. Using data on 4458 men and women aged 60 years from a British birth cohort study, we investigated the extent to which these risk factors are part of the same pathway linking childhood experience to adult survival. Compared with women from non-manual origins, men from non-manual origins, women and men from manual origins, and those with missing data on father's social class had about double the risk of mortality between 26 and 60 years. Cox proportional hazards models showed that these differences were reduced but remained significant after adjusting for childhood cognitive ability, adult socio-economic conditions and smoking. Higher childhood ability increased survival chances by securing better adult socio-economic conditions, such as home ownership, which was strongly associated with survival. These findings were similar for cardiovascular and cancer mortality
The performance of differential point positioning using low-cost GNSS in comparison to DInSAR for monitoring coseismic displacement of the Provenzana–Pernicana fault system (Mt. Etna, 2018 December eruptive phase)
Mt. Etna is a perfect laboratory for testing new approaches and new technologies in a very active geodynamic environment. It offers, in fact, the opportunity for measuring active crustal deformation, related to volcanic activity as well as to seismic faulting on its flanks. In this work, a network of low-cost/low-power Global Navigation Satellite System stations has been installed and tested on Mt. Etna, across a very active fault, the Provenzana–Pernicana system, cutting its north-eastern flank. During the test period, a lateral eruption occurred (starting on 2018 December 24), with a forceful dyke intrusion that stressed all the flanks of the volcano, soliciting all the main faults dissecting the edifice. Also the Provenzana–Pernicana fault system, where this network was recording, was activated during the dyke intrusion, producing a significant seismic swarm. The low-cost/low-power network data analysis allowed the fault slip during the intrusion to be clearly traced in time and space at all the stations lying on the hangingwall mobile block of the fault. All the stations lying south of the fault trace showed an eastward displacement, in very good agreement with the usual kinematics of the fault and the temporal duration of the M 3.5 December 24 earthquake, related to the seaward dislocation of the eastern mobile flank of the volcano, promoted and accelerated by dyke emplacement on the upper part of the edifice
Very high rotational frequencies and band termination in 73Br
Rotational bands in 73Br have been investigated up to spins of 65/2 using the
EUROBALL III spectrometer. One of the negative-parity bands displays the
highest rotational frequency 1.85 MeV reported to date in nuclei with mass
number greater than 25. At high frequencies, the experimental dynamic moment of
inertia for all bands decrease to very low values, indicating a loss of
collectivity. The bands are described in the configuration-dependent cranked
Nilsson-Strutinsky model. The calculations indicate that one of the
negative-parity bands is observed up to its terminating single-particle state
at spin 63/2. This result establishes the first band termination case in the A
= 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid
Communicatio
Boundary conditions at a fluid - solid interface
We study the boundary conditions at a fluid-solid interface using molecular
dynamics simulations covering a broad range of fluid-solid interactions and
fluid densities, and both simple and chain-molecule fluids. The slip length is
shown to be independent of the type of flow, but rather is related to the fluid
organization near the solid, as governed by the fluid-solid molecular
interactions.Comment: REVtex, to appear in Physical Review Letter
Spontaneous imagined intergroup contact and intergroup relations: Quality matters
While research on experimental interventions that aim to improve outgroup attitudes via contact imagery grows, it is important to examine if contact imagery that occurs in spontaneous, non‐experimentally controlled conditions drives attitudes, and in what direction. To answer this, we constructed and validated a spontaneous imagined intergroup contact scale (SIICS) that differentiates between frequency, quality and elaboration of the spontaneous imagery of outgroups. In three correlational studies (NPortugal = 305, NUnited Kingdom = 185, NItaly = 276), we tested the role of spontaneous imagined contact frequency, quality and elaboration in predicting attitudes and social distance (Studies 1‐3) and intended behaviour (Study 3) toward immigrant groups. Results demonstrated that spontaneous imagined contact quality consistently predicted key outcome variables above and beyond the other two dimensions. Importantly, the effects were significant while controlling for other potent forms of direct and indirect contact. Implications of the findings for theory and practice are discussed
Shape coexistence at the proton drip-line: First identification of excited states in 180Pb
Excited states in the extremely neutron-deficient nucleus, 180Pb, have been
identified for the first time using the JUROGAM II array in conjunction with
the RITU recoil separator at the Accelerator Laboratory of the University of
Jyvaskyla. This study lies at the limit of what is presently achievable with
in-beam spectroscopy, with an estimated cross-section of only 10 nb for the
92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and
184Pb is seen, where the prolate minimum continues to rise beyond the N=104
mid-shell with respect to the spherical ground state. Beyond mean-field
calculations are in reasonable correspondence with the trends deduced from
experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.
Recommended from our members
Enhanced tensile ductility in Al-Mg alloys by solid-solution interactions
The development of methods for obtaining high tensile elongation in aluminum alloys is of great importance for the practical forming of near-net-shape parts. Current superplastic alloys are limited in use by high material costs. The utilization of solute-drag creep processes, the approach used in this study, to obtain enhanced tensile ductility in aluminum alloys has lead to tensile elongations of up to 325% in simple, binary Al-Mg alloys with coarse grain sizes. This method has the advantage of lowering processing costs in comparison with superplastic alloys because a fine grain size is not necessary. Whereas superplastic alloys typically have a strain-rate sensitivity of m = 0.5, the enhanced ductility Al-Mg alloys typically exhibit m = 0.3 where maximum ductility is observed. Although a strain-rate sensitivity of rn = 0.5 can lead to elongations of over 1000% (superplastic materials) a value of m = 0.3 is shown experimentally to be sufficient for obtaining elongations of 150% to a maximum observed of 325%. Enhanced ductility is also affected strongly by ternary alloying additions, such as Mn, for which a preliminary understanding is pursued
- …