298 research outputs found

    Phenotype standardization for statin-induced myotoxicity

    Get PDF
    Statins are widely used lipid-lowering drugs that are effective in reducing cardiovascular disease risk. Although they are generally well tolerated, they can cause muscle toxicity, which can lead to severe rhabdomyolysis. Research in this area has been hampered to some extent by the lack of standardized nomenclature and phenotypic definitions. We have used numerical and descriptive classifications and developed an algorithm to define statin-related myotoxicity phenotypes, including myalgia, myopathy, rhabdomyolysis, and necrotizing autoimmune myopathy.</p

    A multi-factorial analysis of response to warfarin in a UK prospective cohort

    Get PDF
    Background Warfarin is the most widely used oral anticoagulant worldwide, but it has a narrow therapeutic index which necessitates constant monitoring of anticoagulation response. Previous genome-wide studies have focused on identifying factors explaining variance in stable dose, but have not explored the initial patient response to warfarin, and a wider range of clinical and biochemical factors affecting both initial and stable dosing with warfarin. Methods A prospective cohort of 711 patients starting warfarin was followed up for 6 months with analyses focusing on both non-genetic and genetic factors. The outcome measures used were mean weekly warfarin dose (MWD), stable mean weekly dose (SMWD) and international normalised ratio (INR) > 4 during the first week. Samples were genotyped on the Illumina Human610-Quad chip. Statistical analyses were performed using Plink and R. Results VKORC1 and CYP2C9 were the major genetic determinants of warfarin MWD and SMWD, with CYP4F2 having a smaller effect. Age, height, weight, cigarette smoking and interacting medications accounted for less than 20 % of the variance. Our multifactorial analysis explained 57.89 % and 56.97 % of the variation for MWD and SMWD, respectively. Genotypes for VKORC1 and CYP2C9*3, age, height and weight, as well as other clinical factors such as alcohol consumption, loading dose and concomitant drugs were important for the initial INR response to warfarin. In a small subset of patients for whom data were available, levels of the coagulation factors VII and IX (highly correlated) also played a role. Conclusion Our multifactorial analysis in a prospectively recruited cohort has shown that multiple factors, genetic and clinical, are important in determining the response to warfarin. VKORC1 and CYP2C9 genetic polymorphisms are the most important determinants of warfarin dosing, and it is highly unlikely that other common variants of clinical importance influencing warfarin dosage will be found. Both VKORC1 and CYP2C9*3 are important determinants of the initial INR response to warfarin. Other novel variants, which did not reach genome-wide significance, were identified for the different outcome measures, but need replication

    Therapeutic Dosing of Acenocoumarol: Proposal of a Population Specific Pharmacogenetic Dosing Algorithm and Its Validation in North Indians

    Get PDF
    Objectives: To develop a population specific pharmacogenetic acenocoumarol dosing algorithm for north Indian patients and show its efficiency in dosage prediction. Methods: Multiple and linear stepwise regression analyses were used to include age, sex, height, weight, body surface area, smoking status, VKORC1-1639 G.A, CYP4F2 1347 G.A, CYP2C9*2,*3 and GGCX 12970 C.G polymorphisms as variables to generate dosing algorithms. The new dosing models were compared with already reported algorithms and also with the clinical data for various performance measures. Odds ratios for association of genotypes with drug sensitive and resistant groups were calculated. Results: The pharmacogenetic dosing algorithm generated by multiple regression analysis explains 41.4 % (p-value,0.001) of dosage variation. Validation of the new algorithm showed its predictive ability to be better than the already established algorithms based on similar variables. Its validity in our population is reflected by increased sensitivity, specificity, accuracy and decreased rates of over- and under- estimation in comparison to clinical data. The VKORC1-1639 G.A polymorphism was found to be strongly associated with acenocoumarol sensitivity according to recessive model. Conclusions: We have proposed an efficient north India specific pharmacogenetic acenocoumarol dosing algorithm whic

    Can mutations in ELA2, neutrophil elastase expression or differential cell toxicity explain sulphasalazine-induced agranulocytosis?

    Get PDF
    BACKGROUND: Drug-induced agranulocytosis, a severe side effect marked by a deficit or absolute lack of granulocytic white blood cells, is a rare side-effect of the anti-inflammatory drug sulphasalazine. Mutations in the human neutrophil elastase gene (ELA2), causing increased intracellular concentration of this serine protease, inhibits neutrophil differentiation in severe congenital neutropenia (SCN). Since the clinical symptoms of agranulocytosis and SCN are similar, we hypothesized that it may origin from a common genetic variation in ELA2 or that sulphasalazine may affect human neutrophil elastase activity and protein expression. METHODS: We screened for genetic differences in ELA2 in DNA from 36 patients who had suffered from sulphasalazine-induced agranulocytosis, and compared them with 72 patients treated with sulphasalazine without blood reactions. We also performed in vitro studies of the blood cell lines HL60 and U937 after sulphasalazine exposure with respect to cell survival index, neutrophil elastase protein expression and activity. RESULTS: None of the mutations in ELA2, which previously have been reported to be associated with SCN, was found in this material. Protein expression of human neutrophil elastase in lymphoma U937 cells was not affected by treatment with concentrations equivalent to therapeutic doses. Cell survival of lymphoma U937 and promyelocytic leukemia HL-60 cells was not affected in this concentration range, but exhibited a decreased proliferative capacity with higher sulphasalazine concentrations. Interestingly the promyelocytic cells were more sensitive to sulphasalazine than the lymphoma cell line. CONCLUSION: Neutrophil elastase expression and ELA2 mutations do, however, not seem to be involved in the etilogy of sulphasalazine-induced agranulocytosis. Why sulphasalazine is more toxic to promyelocytes than to lymphocytes remains to be explained

    Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update

    Get PDF
    This document is an update to the 2011 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and VKORC1 genotypes and warfarin dosing. Evidence from the published literature is presented for CYP2C9, VKORC1, CYP4F2, and rs12777823 genotype-guided warfarin dosing to achieve a target international normalized ratio of 2-3 when clinical genotype results are available. In addition, this updated guideline incorporates recommendations for adult and pediatric patients that are specific to continental ancestry

    Genome-wide association study of angioedema induced by angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment

    Get PDF
    Angioedema in the mouth or upper airways is a feared adverse reaction to angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) treatment, which is used for hypertension, heart failure and diabetes complications. This candidate gene and genome-wide association study aimed to identify genetic variants predisposing to angioedema induced by these drugs. The discovery cohort consisted of 173 cases and 4890 controls recruited in Sweden. In the candidate gene analysis, ETV6, BDKRB2, MME, and PRKCQ were nominally associated with angioedema (p < 0.05), but did not pass Bonferroni correction for multiple testing (p < 2.89 × 10−5). In the genome-wide analysis, intronic variants in the calcium-activated potassium channel subunit alpha-1 (KCNMA1) gene on chromosome 10 were significantly associated with angioedema (p < 5 × 10−8). Whilst the top KCNMA1 hit was not significant in the replication cohort (413 cases and 599 ACEi-exposed controls from the US and Northern Europe), a meta-analysis of the replication and discovery cohorts (in total 586 cases and 1944 ACEi-exposed controls) revealed that each variant allele increased the odds of experiencing angioedema 1.62 times (95% confidence interval 1.05–2.50, p = 0.030). Associated KCNMA1 variants are not known to be functional, but are in linkage disequilibrium with variants in transcription factor binding sites active in relevant tissues. In summary, our data suggest that common variation in KCNMA1 is associated with risk of angioedema induced by ACEi or ARB treatment. Future whole exome or genome sequencing studies will show whether rare variants in KCNMA1 or other genes contribute to the risk of ACEi- and ARB-induced angioedema

    Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>CYP2C9 </it>and <it>VKORC1 </it>are two major genetic factors associated with inter-individual variability in warfarin dose. Additionally, genes in the warfarin metabolism pathway have also been associated with dose variance. We analyzed Single Nucleotide Polymorphisms (SNPs) in these genes to identify genetic factors that might confer warfarin sensitivity in Indonesian patients.</p> <p>Methods</p> <p>Direct sequencing method was used to identify SNPs in <it>CYP2C9, VKORC1, CYP4F2, EPHX1, PROC </it>and <it>GGCX </it>genes in warfarin-treated patients. Multiple linear regressions were performed to model the relationship warfarin daily dose requirement with genetic and non-genetic variables measured and used to develop a novel algorithm for warfarin dosing.</p> <p>Results</p> <p>From the 40 SNPs analyzed, <it>CYP2C9 </it>rs17847036 and <it>VKORC1 </it>rs9923231 showed significant association with warfarin sensitivity. In our study population, no significant correlation could be detected between <it>CYP2C9*3, CYP2C9C</it>-65 (rs9332127), <it>CYP4F2 </it>rs2108622, <it>GGCX </it>rs12714145, <it>EPHX1 </it>rs4653436 and <it>PROC </it>rs1799809 with warfarin sensitivity.</p> <p>Conclusions</p> <p><it>VKORC1 </it>rs9923231 AA and <it>CYP2C9 </it>rs17847036 GG genotypes were associated with low dosage requirements of most patients (2.05 ± 0.77 mg/day and 2.09 ± 0.70 mg/day, respectively). <it>CYP2C9 </it>and <it>VKORC1 </it>genetic variants as well as non-genetic factors such as age, body weight and body height account for 15.4% of variance in warfarin dose among our study population. Additional analysis of this combination could allow for personalized warfarin treatment in ethnic Indonesians.</p

    Association of warfarin dose with genes involved in its action and metabolism

    Get PDF
    We report an extensive study of variability in genes encoding proteins that are believed to be involved in the action and biotransformation of warfarin. Warfarin is a commonly prescribed anticoagulant that is difficult to use because of the wide interindividual variation in dose requirements, the narrow therapeutic range and the risk of serious bleeding. We genotyped 201 patients for polymorphisms in 29 genes in the warfarin interactive pathways and tested them for association with dose requirement. In our study, polymorphisms in or flanking the genes VKORC1, CYP2C9, CYP2C18, CYP2C19, PROC, APOE, EPHX1, CALU, GGCX and ORM1-ORM2 and haplotypes of VKORC1, CYP2C9, CYP2C8, CYP2C19, PROC, F7, GGCX, PROZ, F9, NR1I2 and ORM1-ORM2 were associated with dose (P < 0.05). VKORC1, CYP2C9, CYP2C18 and CYP2C19 were significant after experiment-wise correction for multiple testing (P < 0.000175), however, the association of CYP2C18 and CYP2C19 was fully explained by linkage disequilibrium with CYP2C9*2 and/or *3. PROC and APOE were both significantly associated with dose after correction within each gene. A multiple regression model with VKORC1, CYP2C9, PROC and the non-genetic predictors age, bodyweight, drug interactions and indication for treatment jointly accounted for 62% of variance in warfarin dose. Weaker associations observed for other genes could explain up to ∼10% additional dose variance, but require testing and validation in an independent and larger data set. Translation of this knowledge into clinical guidelines for warfarin prescription will be likely to have a major impact on the safety and efficacy of warfarin. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00439-006-0260-8 and is accessible for authorized users

    A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose.

    Get PDF
    We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose
    corecore