9,570 research outputs found

    Fatigue crack propagation in a low alloy steel under complex load sequences

    Get PDF

    The results of an agricultural analysis of the ERTS-1 MSS data at the Johnson Space Center

    Get PDF
    The initial analysis of the ERTS-1 multispectral scanner (MSS) data at the Johnson Space Center (JSC), Houston, Texas is discussed. The primary data set utilized was the scene over Monterey Bay, California, on July 25, 1972, NASA ERTS ID No. 1002-18134. It was submitted to both computerized and image interpretative processing. An area in the San Joaquin Valley was submitted to an intensive evaluation of the ability of the data to (1) discriminate between crop types and (2) to provide a reasonably accurate area measurement of agricultural features of interest. The results indicate that the ERTS-1 MSS data is capable of providing the identifications and area extent of agricultural lands and field crop types

    Extragalactic infrared spectroscopy

    Get PDF
    The spectra of galaxies in the near infrared atmospheric transmission windows are explored. Emission lines were detected due to molecular hydrogen, atomic hydrogen recombination lines, a line attributed to FEII, and a broad CO absorption feature. Lines due to H2 and FEII are especially strong in interacting and merging galaxies, but they were also detected in Seyferts and normal spirals. These lines appear to be shock excited. Multi-aperture measurements show that they emanate from regions as large as 15 kpc. It is argued that starbursts provide the most plausible and consistent model for the excitation of these lines, but the changes of relative line intensity of various species with aperture suggest that other excitation mechanisms are also operating in the outer regions of these galaxies

    Long-term magnetic field stability of Vega

    Full text link
    We present new spectropolarimetric observations of the normal A-type star Vega, obtained during the summer of 2010 with NARVAL at T\'elescope Bernard Lyot (Pic du Midi Observatory). This new time-series is constituted of 615 spectra collected over 6 different nights. We use the Least-Square-Deconvolution technique to compute, from each spectrum, a mean line profile with a signal-to-noise ratio close to 20,000. After averaging all 615 polarized observations, we detect a circularly polarized Zeeman signature consistent in shape and amplitude with the signatures previously reported from our observations of 2008 and 2009. The surface magnetic geometry of the star, reconstructed using the technique of Zeeman-Doppler Imaging, agrees with the maps obtained in 2008 and 2009, showing that most recognizable features of the photospheric field of Vega are only weakly distorted by large-scale surface flows (differential rotation or meridional circulation).Comment: Proceedings of the conference "Stellar polarimetry: from birth to death", 2011 Jun 27-30, Madiso

    Thermocline management of stratified tanks for heat storage

    Get PDF
    Stratified tanks are useful for maximising the thermal energy efficiency of non-continuous and semi-continuous processes. Liquid at two or more dissimilar temperatures is stored within the same tank to provide a buffer for variations in heating and cooling loads. Control of the thermocline between the hot and cold fluid regions is needed to minimise thermocline growth and maximise operation of the storage tank. An experimental programme using a scale model of an industrial stratified tank (aspect ratio 3.5) and Perspex tank (aspect ratio 8.2) is reported. The behaviour and growth of the hot-cold thermocline under various operating conditions is presented. A siphoning method to re-establish the thermocline without interrupting the use of the tank is tested. Siphoning of the thermocline region from either 20%, 50% or 80% of the tank height is an effective strategy for uninterrupted interface re-establishment. However, the rate and position of siphoning and the load balance of the exit streams are critical variables for minimising the time for effective re-establishment of the two temperature zones

    Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    Full text link
    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-type stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.Comment: IAUS Conference Proceeding
    corecore