440 research outputs found
Do school closures and school reopenings affect community transmission of COVID-19? A systematic review of observational studies
Objectives: To systematically reivew the observational evidence of the effect of school closures and school reopenings on SARS-CoV-2 community transmission. /
Setting: Schools (including early years settings, primary schools and secondary schools). /
Intervention: School closures and reopenings. /
Outcome measure: Community transmission of SARS-CoV-2 (including any measure of community infections rate, hospital admissions or mortality attributed to COVID-19). /
Methods: On 7 January 2021, we searched PubMed, Web of Science, Scopus, CINAHL, the WHO Global COVID-19 Research Database, ERIC, the British Education Index, the Australian Education Index and Google, searching title and abstracts for terms related to SARS-CoV-2 AND terms related to schools or non-pharmaceutical interventions (NPIs). We used the Cochrane Risk of Bias In Non-randomised Studies of Interventions tool to evaluate bias. /
Results: We identified 7474 articles, of which 40 were included, with data from 150 countries. Of these, 32 studies assessed school closures and 11 examined reopenings. There was substantial heterogeneity between school closure studies, with half of the studies at lower risk of bias reporting reduced community transmission by up to 60% and half reporting null findings. The majority (n=3 out of 4) of school reopening studies at lower risk of bias reported no associated increases in transmission. /
Conclusions: School closure studies were at risk of confounding and collinearity from other non-pharmacological interventions implemented around the same time as school closures, and the effectiveness of closures remains uncertain. School reopenings, in areas of low transmission and with appropriate mitigation measures, were generally not accompanied by increasing community transmission. With such varied evidence on effectiveness, and the harmful effects, policymakers should take a measured approach before implementing school closures; and should look to reopen schools in times of low transmission, with appropriate mitigation measures
Evolution of Robustness to Noise and Mutation in Gene Expression Dynamics
Phenotype of biological systems needs to be robust against mutation in order
to sustain themselves between generations. On the other hand, phenotype of an
individual also needs to be robust against fluctuations of both internal and
external origins that are encountered during growth and development. Is there a
relationship between these two types of robustness, one during a single
generation and the other during evolution? Could stochasticity in gene
expression have any relevance to the evolution of these robustness? Robustness
can be defined by the sharpness of the distribution of phenotype; the variance
of phenotype distribution due to genetic variation gives a measure of `genetic
robustness' while that of isogenic individuals gives a measure of
`developmental robustness'. Through simulations of a simple stochastic gene
expression network that undergoes mutation and selection, we show that in order
for the network to acquire both types of robustness, the phenotypic variance
induced by mutations must be smaller than that observed in an isogenic
population. As the latter originates from noise in gene expression, this
signifies that the genetic robustness evolves only when the noise strength in
gene expression is larger than some threshold. In such a case, the two
variances decrease throughout the evolutionary time course, indicating increase
in robustness. The results reveal how noise that cells encounter during growth
and development shapes networks' robustness to stochasticity in gene
expression, which in turn shapes networks' robustness to mutation. The
condition for evolution of robustness as well as relationship between genetic
and developmental robustness is derived through the variance of phenotypic
fluctuations, which are measurable experimentally.Comment: 25 page
Distinct Steps of Neural Induction Revealed by Asterix, Obelix and TrkC, Genes Induced by Different Signals from the Organizer
The amniote organizer (Hensen's node) can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4–5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct “epochs”, or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system
The Sertindole Safety Survey: A retrospective analysis under a named patient use programme in Europe
<p>Abstract</p> <p>Background</p> <p>After sertindole's suspension, health authorities established a specific named-patient use (NPU) programme in order to supply sertindole to patients who did not respond to or did not tolerate alternative treatments. This programme provided the possibility of prospectively following an exhaustive cohort of patients treated with sertindole after its suspension. A survey was performed to assess sertindole's modalities of prescription, assess and document any serious adverse events (SAEs), and assess the mortality rate within the NPU cohort.</p> <p>Methods</p> <p>The study comprised a survey of sertindole-treated patients in eleven European countries. All patients treated with sertindole within the NPU programme were eligible for the study.</p> <p>Results</p> <p>1,432 patients were included in the study. The reason for sertindole prescription was lack of efficacy (approximately 50%) or adverse events (approximately 20%) of other antipsychotic treatments. The mean sertindole dose was 13.4 mg daily. Lack of efficacy and adverse events were reported as reasons for sertindole discontinuation.</p> <p>A total of 97 SAEs were recorded, including ten fatal outcomes, which occurred during the study period or within thirty days after sertindole discontinuation. The all-cause mortality rate was 0.51 per 100 Person-Years of Exposure (95% Poisson confidence interval: 0.23–0.97). QTc prolongation was reported in 15 patients (1.05% of total patients), being a rate of 0.85 per 100 Person-Years of Exposure [95% CI: 0.48–1.41].</p> <p>Conclusion</p> <p>Although prescribing and supplying sertindole were subject to administrative constraints, a significant number of patients were treated with sertindole, thus supporting the need for sertindole in specific cases.</p> <p>Trial registration number</p> <p>Not applicable.</p
ATTR amyloidosis during the COVID-19 pandemic: insights from a global medical roundtable
BACKGROUND: The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing the ongoing coronavirus disease 2019 (COVID-19) pandemic has raised serious concern for patients with chronic disease. A correlation has been identified between the severity of COVID-19 and a patient's preexisting comorbidities. Although COVID-19 primarily involves the respiratory system, dysfunction in multiple organ systems is common, particularly in the cardiovascular, gastrointestinal, immune, renal, and nervous systems. Patients with amyloid transthyretin (ATTR) amyloidosis represent a population particularly vulnerable to COVID-19 morbidity due to the multisystem nature of ATTR amyloidosis. MAIN BODY: ATTR amyloidosis is a clinically heterogeneous progressive disease, resulting from the accumulation of amyloid fibrils in various organs and tissues. Amyloid deposition causes multisystem clinical manifestations, including cardiomyopathy and polyneuropathy, along with gastrointestinal symptoms and renal dysfunction. Given the potential for exacerbation of organ dysfunction, physicians note possible unique challenges in the management of patients with ATTR amyloidosis who develop multiorgan complications from COVID-19. While the interplay between COVID-19 and ATTR amyloidosis is still being evaluated, physicians should consider that the heightened susceptibility of patients with ATTR amyloidosis to multiorgan complications might increase their risk for poor outcomes with COVID-19. CONCLUSION: Patients with ATTR amyloidosis are suspected to have a higher risk of morbidity and mortality due to age and underlying ATTR amyloidosis-related organ dysfunction. While further research is needed to characterize this risk and management implications, ATTR amyloidosis patients might require specialized management if they develop COVID-19. The risks of delaying diagnosis or interrupting treatment for patients with ATTR amyloidosis should be balanced with the risk of exposure in the health care setting. Both physicians and patients must adapt to a new construct for care during and possibly after the pandemic to ensure optimal health for patients with ATTR amyloidosis, minimizing treatment interruptions
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland
Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a substrate with very low methanogenic activity. We found a sixfold difference among plant species in their effect on methane emission rates: Molinia caerulea and Lysimachia vulgaris caused low emission rates, whereas Senecio paludosus, Carex flava, Juncus effusus and Typha latifolia caused relatively high rates. Centaurea jacea, Iris sibirica, and Carex davalliana caused intermediate rates. However, we found no effect of either plant biomass or plant functional groups – based on life form or productivity of the habitat – upon methane emission. Emissions were much lower than those usually reported in temperate wetlands, which we attribute to reduced concentrations of labile carbon following topsoil removal.
Thus, unlike most wetland sites, methane production in this site was probably fuelled chiefly by root exudation from living plants and from root decay. We conclude that in most wetlands, where concentrations of labile carbon are much higher, these sources account for only a small proportion of the methane emitted. Our study confirms that plant species composition does influence methane emission from wetlands, and should be considered when developing measures to mitigate the greenhouse gas emissions
The bashful and the boastful : prestigious leaders and social change in Mesolithic Societies
The creation and maintenance of influential leaders and authorities is one of the key themes of archaeological and historical enquiry. However the social dynamics of authorities and leaders in the Mesolithic remains a largely unexplored area of study. The role and influence of authorities can be remarkably different in different situations yet they exist in all societies and in almost all social contexts from playgrounds to parliaments. Here we explore the literature on the dynamics of authority creation, maintenance and contestation in egalitarian societies, and discuss the implications for our interpretation and understanding of the formation of authorities and leaders and changing social relationships within the Mesolithic
A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions
Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact
- …