90 research outputs found

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    Estradiol-17β-induced changes in the porcine endometrial transcriptome in vivo

    Get PDF
    Estradiol-17β (E2) is a key hormone regulating reproductive functions in females. In pigs, E2, as the main conceptus signal, initiates processes resulting in prolonged corpus luteum function, embryo development, and implantation. During early pregnancy the endometrium undergoes morphological and physiological transitions that are tightly related to transcriptome changes. Recently, however, the importance of E2 as a primary conceptus signal in the pig has been questionable. Thus, the aim of the present study was to determine the effects of E2 on the porcine endometrial transcriptome in vivo and to compare these effects with transcriptome profiles on day 12 of pregnancy. Microarray analysis revealed differentially expressed genes (DEGs) in response to E2 with overrepresented functional terms related to secretive functions, extracellular vesicles, cell adhesion, proliferation and differentiation, tissue rearrangements, immune response, lipid metabolism, and many others. Numerous common DEGs and processes for the endometrium on day 12 of pregnancy and E2-treated endometrium were identified. In summary, the present study is the first evidence for the effect of E2 on transcriptome profiles in porcine endometrium in vivo in the period corresponding to the maternal recognition of pregnancy. The presented results provide a valuable resource for further targeted studies considering genes and pathways regulated by conceptus-derived estrogens and their role in pregnancy establishment

    Non-aqueous synthesis of hexagonal ZnO nanopyramids: Gas sensing properties

    No full text
    Zinc oxide (ZnO) nanopyramids were synthesized by a one-pot route in a non-aqueous and surfactant-free environment. The synthesized metal oxide was characterized using SEM, XRD, and TEM to investigate the surface morphology and crystallographic phase of the nanostructures. It was observed that the ZnO nanopyramids were of uniform size and symmetrical, with a hexagonal base and height of similar to 100nm. Gas sensing characterization of the ZnO nanopyramids when deposited as thin-film onto conductometric transducers were performed towards NOx and C2H5OH vapor of different concentrations over a temperature range of 22-350 degrees C. It was observed that the sensors responded towards NO2 (10 ppm) and C2H5OH (250 ppm) analytes best at temperatures of 200 and 260 degrees C with a sensor response of 14.5 and 5.72, respectively. The sensors showed satisfactory sensitivity, repeatability as well as fast response and recovery towards both the oxidizing and the reducing analyte. The good performance was attributed to the low amount of organic impurities, large surface-to-volume ratio and high crystallinity of the solvothermally synthesized ZnO nanopyramids

    The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics

    Get PDF
    Vibrational relaxation of the 6(1) level of S-1(B-1(2u)) benzene is analyzed using the angular momentum model of inelastic processes. Momentum-(rotational) angular momentum diagrams illustrate energetic and angular momentum constraints on the disposal of released energy and the effect of collision partner on resultant benzene rotational excitation. A kinematic "equivalent rotor" model is introduced that allows quantitative prediction of rotational distributions from inelastic collisions in polyatomic molecules. The method was tested by predicting K-state distributions in glyoxal-Ne as well as J-state distributions in rotationally inelastic acetylene-He collisions before being used to predict J and K distributions from vibrational relaxation of 6(1) benzene by H-2, D-2, and CH4. Diagrammatic methods and calculations illustrate changes resulting from simultaneous collision partner excitation, a particularly effective mechanism in p-H-2 where some 70% of the available 6(1)-->0(0) energy may be disposed into 0-->2 rotation. These results support the explanation for branching ratios in 6(1)-->0(0) relaxation given by Waclawik and Lawrance and the absence of this pathway for monatomic partners. Collision-induced vibrational relaxation in molecules represents competition between the magnitude of the energy gap of a potential transition and the ability of the colliding species to generate the angular momentum (rotational and orbital) needed for the transition to proceed. Transition probability falls rapidly as DeltaJ increases and for a given molecule-collision partner pair will provide a limit to the gap that may be bridged. Energy constraints increase as collision partner mass increases, an effect that is amplified when J(i)>0. Large energy gaps are most effectively bridged using light collision partners. For efficient vibrational relaxation in polyatomics an additional requirement is that the molecular motion of the mode must be capable of generating molecular rotation on contact with the collision partner in order to meet the angular momentum requirements. We postulate that this may account for some of the striking propensities that characterize polyatomic energy transfer. (C) 2004 American Institute of Physics
    corecore