3 research outputs found

    Whole blood RNA sequencing identifies transcriptional differences between primary sclerosing cholangitis and ulcerative colitis

    Get PDF
    Background & Aims: Genetic and microbiome studies across patients with primary sclerosing cholangitis (PSC) and ulcerative colitis (UC) have indicated that UC in PSC is a separate disease entity to primary UC, but expression studies for PSC are lacking. Methods: We conducted whole blood RNA sequencing experiments for 495 patients with UC, 220 patients with PSC (including 177 with UC), and 320 healthy controls from Germany and Norway. Differential expression analyses, gene ontology and coexpression analyses and random forest machine learning were performed to identify genes, ontologies and transcriptional features that discriminate diagnoses. Results: The blood transcriptome in UC and PSC is dominated by neutrophil activation genes (e.g. S100A12). In UC, but not in PSC (neither PSC alone nor patients with an additional diagnosis of UC [PSC/UC]), ribosomal, mitochondrial, and energy metabolism genes are upregulated in conjunction with antibody transcript expression (MZB1, IGJ). In PSC, there is an increase in modules related to apoptosis and expression of genes of interferon-I-related ontologies. Random forest analysis could poorly discriminate PSC alone from PSC/UC (AUROC 0.56), but could discriminate PSC, UC, and controls with high accuracy (AUROC UC vs. controls 0.95, PSC vs. controls 0.88, UC vs. PSC 0.986). The main coexpression modules relevant for distinguishing PSC, UC, and controls are enriched in neutrophil degranulation and antibody production genes. Conclusions: Supported by machine learning results, PSC and UC appear to be separate entities on a molecular level, while PSC/UC and PSC are indistinguishable. Impact and implications: Clinical and genetic studies suggest that the colitis-like symptoms in primary sclerosing cholangitis (PSC) represent a different disease entity from primary ulcerative colitis (UC). The present study supports this assumption with transcriptomic data from whole blood and describes notable differences in gene expression between primary UC and PSC, providing insights into the still unclear pathophysiology of both diseases. These findings are of interest to scientists seeking to decipher the molecular pathophysiology of both diseases and provide evidence that a redefinition of the PSC-UC phenotype should be considered. The study practically supports future molecular research by providing a large transcriptomic whole blood reference cohort.publishedVersio

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ∼0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.publishedVersio

    Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease

    Get PDF
    Genetic correlations and an increased incidence of psychiatric disorders in inflammatory-bowel disease have been reported, but shared molecular mechanisms are unknown. We performed cross-tissue and multiple-gene conditioned transcriptome-wide association studies for 23 tissues of the gut-brain-axis using genome-wide association studies data sets (total 180,592 patients) for Crohn’s disease, ulcerative colitis, primary sclerosing cholangitis, schizophrenia, bipolar disorder, major depressive disorder and attention-deficit/hyperactivity disorder. We identified NR5A2, SATB2, and PPP3CA (encoding a target for calcineurin inhibitors in refractory ulcerative colitis) as shared susceptibility genes with transcriptome-wide significance both for Crohn’s disease, ulcerative colitis and schizophrenia, largely explaining fine-mapped association signals at nearby genome-wide association study susceptibility loci. Analysis of bulk and single-cell RNA-sequencing data showed that PPP3CA expression was strongest in neurons and in enteroendocrine and Paneth-like cells of the ileum, colon, and rectum, indicating a possible link to the gut-brain-axis. PPP3CA together with three further suggestive loci can be linked to calcineurin-related signaling pathways such as NFAT activation or Wnt
    corecore