429 research outputs found

    An in vitro DNA sensor-based assay to measure receptor-specific adhesion forces of eukaryotic cells and pathogens

    Get PDF
    Motility of eukaryotic cells or pathogens within tissues is mediated by the turnover of specific interactions with other cells or with the extracellular matrix. Biophysical characterization of these ligand-receptor adhesions helps to unravel the molecular mechanisms driving migration. Traction force microscopy or optical tweezers are typically used to measure the cellular forces exerted by cells on a substrate. However, the spatial resolution of traction force microscopy is limited to ~2 μm and performing experiments with optical traps is very time-consuming. Here we present the production of biomimetic surfaces that enable specific cell adhesion via synthetic ligands and at the same time monitor the transmitted forces by using molecular tension sensors. The ligands were coupled to double-stranded DNA probes with defined force thresholds for DNA unzipping. Receptor-mediated forces in the pN range are thereby semi-quantitatively converted into fluorescence signals, which can be detected by standard fluorescence microscopy at the resolution limit (~0.2 μm). The modular design of the assay allows to vary the presented ligands and the mechanical strength of the DNA probes, which provides a number of possibilities to probe the adhesion of different eukaryotic cell types and pathogens and is exemplified here with osteosarcoma cells and Plasmodium berghei Sporozoites

    In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures

    Get PDF
    The market of new psychoactive substances (NPS) is characterized by a high turnover and thus provides several challenges for analytical toxicology. The analysis of urine samples often requires detailed knowledge about metabolism given that parent compounds may either be present only in small amounts or may not even be excreted. Hence, knowledge of the metabolism of NPS is a prerequisite for the development of reliable analytical methods. The main aim of this work was to elucidate for the first time the pooled human liver S9 fraction metabolism of the nine d-lysergic acid diethylamide (LSD) derivatives 1-acetyl-LSD (ALD-52), 1-propionyl-LSD (1P-LSD), 1-butyryl-LSD (1B-LSD), N6-ethyl-nor-LSD (ETH-LAD), 1-propionyl-N6-ethyl-nor-LSD (1P-ETH-LAD), N6-allyl-nor-LSD (AL-LAD), N-ethyl-N-cyclopropyl lysergamide (ECPLA), (2’S,4’S)-lysergic acid 2,4-dimethylazetidide (LSZ), and lysergic acid morpholide (LSM-775) by means of liquid chromatography coupled to high resolution tandem mass spectrometry. Identification of the monooxygenase enzymes involved in the initial metabolic steps was performed using recombinant human enzymes and their contribution confirmed by inhibition experiments. Overall, N-dealkylation, hydroxylation, as well as combinations of these steps predominantly catalyzed by CYP1A2 and CYP3A4 were found. For ALD-52, 1P-LSD, and 1B-LSD deacylation to LSD was observed. The obtained mass spectral data of all metabolites is essential for reliable analytical detection particularly in urinalysis and for differentiation of the LSD-like compounds as biotransformations also led to structurally identical metabolites. However, in urine of rats after the administration of expected recreational doses and using standard urine screening approaches, parent drugs or metabolites could not be detected

    Managing uncertainty: a review of food system scenario analysis and modelling

    Get PDF
    Complex socio-ecological systems like the food system are unpredictable, especially to long-term horizons such as 2050. In order to manage this uncertainty, scenario analysis has been used in conjunction with food system models to explore plausible future outcomes. Food system scenarios use a diversity of scenario types and modelling approaches determined by the purpose of the exercise and by technical, methodological and epistemological constraints. Our case studies do not suggest Malthusian futures for a projected global population of 9 billion in 2050; but international trade will be a crucial determinant of outcomes; and the concept of sustainability across the dimensions of the food system has been inadequately explored so far. The impact of scenario analysis at a global scale could be strengthened with participatory processes involving key actors at other geographical scales. Food system models are valuable in managing existing knowledge on system behaviour and ensuring the credibility of qualitative stories but they are limited by current datasets for global crop production and trade, land use and hydrology. Climate change is likely to challenge the adaptive capacity of agricultural production and there are important knowledge gaps for modelling research to address

    Insights into energy balance dysregulation from a mouse model of methylmalonic aciduria

    Get PDF
    Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)–type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator–activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management

    Improving Metabolic Health Through Precision Dietetics in Mice

    Get PDF
    The incidence of diet-induced metabolic disease has soared over the last half-century, despite national efforts to improve health through universal dietary recommendations. Studies comparing dietary patterns of populations with health outcomes have historically provided the basis for healthy diet recommendations. However, evidence that population-level diet responses are reliable indicators of responses across individuals is lacking. This study investigated how genetic differences influence health responses to several popular diets in mice, which are similar to humans in genetic composition and the propensity to develop metabolic disease, but enable precise genetic and environmental control. We designed four human-comparable mouse diets that are representative of those eaten by historical human populations. Across four genetically distinct inbred mouse strains, we compared the American diet’s impact on metabolic health to three alternative diets (Mediterranean, Japanese, and Maasai/ketogenic). Furthermore, we investigated metabolomic and epigenetic alterations associated with diet response. Health effects of the diets were highly dependent on genetic background, demonstrating that individualized diet strategies improve health outcomes in mice. If similar genetic-dependent diet responses exist in humans, then a personalized, or “precision dietetics,” approach to dietary recommendations may yield better health outcomes than the traditional one-size-fits-all approach

    Correlates of video games playing among adolescents in an Islamic country

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No study has ever explored the prevalence and correlates of video game playing among children in the Islamic Republic of Iran. This study describes patterns and correlates of excessive video game use in a random sample of middle-school students in Iran. Specifically, we examine the relationship between video game playing and psychological well-being, aggressive behaviors, and adolescents' perceived threat of video-computer game playing.</p> <p>Methods</p> <p>This cross-sectional study was performed with a random sample of 444 adolescents recruited from eight middle schools. A self-administered, anonymous questionnaire covered socio-demographics, video gaming behaviors, mental health status, self-reported aggressive behaviors, and perceived side effects of video game playing.</p> <p>Results</p> <p>Overall, participants spent an average of 6.3 hours per week playing video games. Moreover, 47% of participants reported that they had played one or more intensely violent games. Non-gamers reported suffering poorer mental health compared to excessive gamers. Both non-gamers and excessive gamers overall reported suffering poorer mental health compared to low or moderate players. Participants who initiated gaming at younger ages were more likely to score poorer in mental health measures. Participants' self-reported aggressive behaviors were associated with length of gaming. Boys, but not girls, who reported playing video games excessively showed more aggressive behaviors. A multiple binary logistic regression shows that when controlling for other variables, older students, those who perceived less serious side effects of video gaming, and those who have personal computers, were more likely to report that they had played video games excessively.</p> <p>Conclusion</p> <p>Our data show a curvilinear relationship between video game playing and mental health outcomes, with "moderate" gamers faring best and "excessive" gamers showing mild increases in problematic behaviors. Interestingly, "non-gamers" clearly show the worst outcomes. Therefore, both children and parents of non-game players should be updated about the positive impact of moderate video gaming. Educational interventions should also be designed to educate adolescents and their parents of the possible harmful impact of excessive video game playing on their health and psychosocial functioning.</p

    Relationship between smoking and obesity:a cross-sectional study of 499,504 middle-aged adults in the UK general population

    Get PDF
    Background: There is a general perception that smoking protects against weight gain and this may influence commencement and continuation of smoking, especially among young women.&lt;p&gt;&lt;/p&gt; Methods: A cross-sectional study was conducted using baseline data from UK Biobank. Logistic regression analyses were used to explore the association between smoking and obesity; defined as body mass index (BMI) &gt;30kg/m2. Smoking was examined in terms of smoking status, amount smoked, duration of smoking and time since quitting and we adjusted for the potential confounding effects of age, sex, socioeconomic deprivation, physical activity, alcohol consumption, hypertension and diabetes.&lt;p&gt;&lt;/p&gt; Results: The study comprised 499,504 adults aged 31 to 69 years. Overall, current smokers were less likely to be obese than never smokers (adjusted OR 0.83 95% CI 0.81-0.86). However, there was no significant association in the youngest sub-group (≤40 years). Former smokers were more likely to be obese than both current smokers (adjusted OR 1.33 95% CI 1.30-1.37) and never smokers (adjusted OR 1.14 95% CI 1.12-1.15). Among smokers, the risk of obesity increased with the amount smoked and former heavy smokers were more likely to be obese than former light smokers (adjusted OR 1.60, 95% 1.56-1.64, p&lt;0.001). Risk of obesity fell with time from quitting. After 30 years, former smokers still had higher risk of obesity than current smokers but the same risk as never smokers.&lt;p&gt;&lt;/p&gt; Conclusion: Beliefs that smoking protects against obesity may be over-simplistic; especially among younger and heavier smokers. Quitting smoking may be associated with temporary weight gain. Therefore, smoking cessation interventions should include weight management support.&lt;p&gt;&lt;/p&gt

    Evidence of Dopaminergic Processing of Executive Inhibition

    Get PDF
    Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand (11C-raclopride) after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites) and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging
    corecore