53 research outputs found
Recommended from our members
Cost-effectiveness of 7-day-Holter monitoring alone or in combination with transthoracic echocardiography in patients with cerebral ischemia
Background and purpose Prolonged Holter monitoring of patients with cerebral ischemia increases the detection rate of paroxysmal atrial fibrillation (PAF); this leads to improved antithrombotic regimens aimed at preventing recurrent ischemic strokes. The aim of this study was to compare a 7-day-Holter monitoring (7-d-Holter) alone or in combination with prior selection via transthoracic echocardiography (TTE) to a standard 24-h-Holter using a cost-utility analysis. Methods: Lifetime cost, quality-adjusted life years (QALY), and incremental cost-effectiveness ratios (ICER) were estimated for a cohort of patients with acute cerebral ischemia and no contraindication to oral anticoagulation. A Markov model was developed to simulate the long-term course and progression of cerebral ischemia considering the different diagnostic algorithms (24-h-Holter, 7-d-Holter, 7-d-Holter after preselection by TTE). Clinical data for these algorithms were derived from the prospective observational Find-AF study (ISRCTN 46104198). Results: Predicted lifelong discounted costs were 33,837 € for patients diagnosed by the 7-d-Holter and 33,852 € by the standard 24-h-Holter. Cumulated QALYs were 3.868 for the 7-d-Holter compared to 3.844 for the 24-h-Holter. The 7-d-Holter dominated the 24-h-Holter in the base-case scenario and remained cost-effective in extensive sensitivity analysis of key input parameter with a maximum of 8,354 €/QALY gained. Preselecting patients for the 7-d-Holter had no positive effect on the cost-effectiveness. Conclusions: A 7-d-Holter to detect PAF in patients with cerebral ischemia is cost-effective. It increases the detection which leads to improved antithrombotic regimens; therefore, it avoids recurrent strokes, saves future costs, and decreases quality of life impairment. Preselecting patients by TTE does not improve cost-effectiveness
Extra‐cardiac targets in the management of cardiometabolic disease: Device‐based therapies
Heart failure (HF) does not occur in a vacuum and is commonly defined and exacerbated by its co-morbid conditions. Neurohormonal imbalance and systemic inflammation are some of the key pathomechanisms of HF but also commonly encountered co-morbidities such as arterial hypertension, diabetes mellitus, cachexia, obesity and sleep-disordered breathing. A cornerstone of HF management is neurohormonal blockade, which in HF with reduced ejection fraction has been tied to a reduction in morbidity and mortality. Pharmacological treatment effective in patients with HF with reduced ejection fraction did not show substantial effects in HF with preserved ejection fraction. Here, we review novel device-based therapies using neuromodulation of extra-cardiac targets to treat cardiometabolic disease
Heart failure therapy in diabetic patients-comparison with the recent ESC/EASD guideline
<p>Abstract</p> <p>Background</p> <p>To assess heart failure therapies in diabetic patients with preserved as compared to impaired systolic ventricular function.</p> <p>Methods</p> <p>3304 patients with heart failure from 9 different studies were included (mean age 63 ± 14 years); out of these, 711 subjects had preserved left ventricular ejection fraction (≥ 50%) and 994 patients in the whole cohort suffered from diabetes.</p> <p>Results</p> <p>The majority (>90%) of heart failure patients with reduced ejection fraction (SHF) and diabetes were treated with an ACE inhibitor (ACEi) or angiotensin receptor blocker (ARB) or with beta-blockers. By contrast, patients with diabetes and preserved ejection fraction (HFNEF) were less likely to receive these substance classes (p < 0.001) and had a worse blood pressure control (p < 0.001). In comparison to patients without diabetes, the probability to receive these therapies was increased in diabetic HFNEF patients (p < 0.001), but not in diabetic SHF patients. Aldosterone receptor blockers were given more often to diabetic patients with reduced ejection fraction (p < 0.001), and the presence and severity of diabetes decreased the probability to receive this substance class, irrespective of renal function.</p> <p>Conclusions</p> <p>Diabetic patients with HFNEF received less heart failure medication and showed a poorer control of blood pressure as compared to diabetic patients with SHF. SHF patients with diabetes were less likely to receive aldosterone receptor blocker therapy, irrespective of renal function.</p
Routine Surveillance of SARS-CoV-2 Serostatus in Pediatrics Allows Monitoring of Humoral Response
The occurrence of SARS-CoV-2 infections during the pandemic was mainly based on PCR testing of symptomatic patients. However, with new variants, vaccinations, and the changing of the clinical disease severity, knowledge about general immunity is elusive. For public health systems, timely knowledge of these conditions is essential, but it is particularly scarce for the pediatric population. Therefore, in this study, we wanted to investigate the spike and nucleocapsid seroprevalence in pediatric patients using routine residual blood tests collected during the pandemic. This prospective observational study was conducted over seven one-month periods. Herein, the latest four time periods (November 2021, January 2022, March 2022, and May 2022) are depicted. Each patient of a tertiary-care center in Germany was anonymized after collection of clinical diagnosis (ICD-10) and then routinely tested for the respective spike and nucleocapsid SARS-CoV-2 antibody titer. A total of 3235 blood samples from four time periods were included. Spike seroprevalence rose from 37.6% to 51.9% to 70.5% to 85.1% and nucleocapsid seroprevalence from 11.6% to 17.0% to 36.7% to 58.1% in May 2022. In detail, significant changes in seroprevalence between age groups but not between sex or diagnosis groups were found. Quantitative measures revealed rising spike and constant nucleocapsid antibody levels over the pandemic with a half-life of 102 days for spike and 45 days for nucleocapsid antibodies. Routine laboratory assessment of SARS-CoV-2 in residual blood specimens of pediatric hospitals enables monitoring of the seroprevalence and may allow inferences about general immunity in this cohort.</jats:p
Expression and Regulation of Retinoic Acid Receptor Responders in the Human Placenta
Introduction:
Retinoic acid (RA) signaling through its receptors (RARA, RARB, RARG, and the retinoic X receptor RXRA) is essential for healthy placental and fetal development. An important group of genes regulated by RA are the RA receptor responders (RARRES1, 2, and 3). We set out to analyze their expression and regulation in healthy and pathologically altered placentas of preeclampsia (PE) and intrauterine growth restriction (IUGR) as well as in trophoblast cell lines.
Methods:
We performed immunohistochemical staining on placental sections and analyzed gene expression by real-time polymerase chain reaction. Additionally, we performed cell culture experiments and stimulated Swan71 and Jeg-3 cells with different RA derivates and 2′-deoxy-5-azacytidine (AZA) to induce DNA demethylation.
Results:
RARRES1, 2, and 3 and RARA, RARB, RARG, and RXRA are expressed in the extravillous part of the placenta. RARRES1, RARA, RARG, and RXRA were additionally detected in villous cytotrophoblasts. RARRES gene expression was induced via activation of RARA, RARB, and RARG in trophoblast cells. RARRES1 was overexpressed in villous trophoblasts and the syncytiotrophoblast from PE placentas, but not in IUGR without PE. Promoter methylation was detectable for RARRES1 and RARB based on their sensitivity toward AZA treatment of trophoblast cell lines.
Discussion:
RARRES1, 2 and 3 are expressed in the functional compartments of the human placenta and can be regulated by RA. We hypothesize that the epigenetic suppression of trophoblast RARRES1 and RARB expression and the upregulation of RARRES1 in PE trophoblast cells suggest an involvement of environmental factors (eg, maternal vitamin A intake) in the pathogenesis of this pregnancy complication
Extra-cardiac targets in the management of cardiometabolic disease: device-based therapies
Heart failure (HF) does not occur in a vacuum and is commonly defined and exacerbated by its co-morbid conditions. Neurohormonal imbalance and systemic inflammation are some of the key pathomechanisms of HF but also commonly encountered co-morbidities such as arterial hypertension, diabetes mellitus, cachexia, obesity and sleep-disordered breathing. A cornerstone of HF management is neurohormonal blockade, which in HF with reduced ejection fraction has been tied to a reduction in morbidity and mortality. Pharmacological treatment effective in patients with HF with reduced ejection fraction did not show substantial effects in HF with preserved ejection fraction. Here, we review novel device-based therapies using neuromodulation of extra-cardiac targets to treat cardiometabolic disease
Chronic thromboembolic pulmonary hypertension and impairment after pulmonary embolism: the FOCUS study
AIMS: To systematically assess late outcomes of acute pulmonary embolism (PE) and to investigate the clinical implications of post-PE impairment (PPEI) fulfilling prospectively defined criteria.
METHODS AND RESULTS: A prospective multicentre observational cohort study was conducted in 17 large-volume centres across Germany. Adult consecutive patients with confirmed acute symptomatic PE were followed with a standardized assessment plan and pre-defined visits at 3, 12, and 24 months. The co-primary outcomes were (i) diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH), and (ii) PPEI, a combination of persistent or worsening clinical, functional, biochemical, and imaging parameters during follow-up. A total of 1017 patients (45% women, median age 64 years) were included in the primary analysis. They were followed for a median duration of 732 days after PE diagnosis. The CTEPH was diagnosed in 16 (1.6%) patients, after a median of 129 days; the estimated 2-year cumulative incidence was 2.3% (1.2-4.4%). Overall, 880 patients were evaluable for PPEI; the 2-year cumulative incidence was 16.0% (95% confidence interval 12.8-20.8%). The PPEI helped to identify 15 of the 16 patients diagnosed with CTEPH during follow-up (hazard ratio for CTEPH vs. no CTEPH 393; 95% confidence interval 73-2119). Patients with PPEI had a higher risk of re-hospitalization and death as well as worse quality of life compared with those without PPEI.
CONCLUSION: In this prospective study, the cumulative 2-year incidence of CTEPH was 2.3%, but PPEI diagnosed by standardized criteria was frequent. Our findings support systematic follow-up of patients after acute PE and may help to optimize guideline recommendations and algorithms for post-PE care
Titration to target dose of bisoprolol vs. carvedilol in elderly patients with heart failure: the CIBIS-ELD trial
AIMS: Various beta-blockers with distinct pharmacological profiles are approved in heart failure, yet they remain underused and underdosed. Although potentially of major public health importance, whether one agent is superior in terms of tolerability and optimal dosing has not been investigated. The aim of this study was therefore to compare the tolerability and clinical effects of two proven beta-blockers in elderly patients with heart failure. METHODS AND RESULTS: We performed a double-blind superiority trial of bisoprolol vs. carvedilol in 883 elderly heart failure patients with reduced or preserved left ventricular ejection fraction in 41 European centres. The primary endpoint was tolerability, defined as reaching and maintaining guideline-recommended target doses after 12 weeks treatment. Adverse events and clinical parameters of patient status were secondary endpoints. None of the beta-blockers was superior with regards to tolerability: 24% [95% confidence interval (CI) 20-28] of patients in the bisoprolol arm and 25% (95% CI 21-29) of patients in the carvedilol arm achieved the primary endpoint (P= 0.64). The use of bisoprolol resulted in greater reduction of heart rate (adjusted mean difference 2.1 b.p.m., 95% CI 0.5-3.6, P= 0.008) and more, dose-limiting, bradycardic adverse events (16 vs. 11%; P= 0.02). The use of carvedilol led to a reduction of forced expiratory volume (adjusted mean difference 50 mL, 95% CI 4-95, P= 0.03) and more, non-dose-limiting, pulmonary adverse events (10 vs. 4%; P < 0.001). CONCLUSION: Overall tolerability to target doses was comparable. The pattern of intolerance, however, was different: bradycardia occurred more often in the bisoprolol group, whereas pulmonary adverse events occurred more often in the carvedilol group. This study is registered with controlled-trials.com, number ISRCTN34827306
The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation
Introduction
Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers.
Methods
After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA).
Results
PBMCs showed significantly higher mitochondrial O2 uptake and lower
O
2
•
−
production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis.
Conclusion
In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected.
O
2
•
−
concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods
Apprenticeship, Vocational Training and Early Labor Market Outcomes - In East and West Germany
We study the returns to apprenticeship and vocational training for three early labor market outcomes all measured at age 25 for East and West German youths: non-employment (i.e., unemployment or out of the labor force), permanent fulltime employment, and wages. We find strong positive effects of apprenticeship and vocational training. There are no significant differences for different types of vocational training, minor differences between East and West Germany and males and females, and no significant changes in the returns over time. Instrumental variable estimations confirm the regression results. The positive returns hold up even in poor labor market situations
- …