26 research outputs found

    Evaluation of antimicrobial effectiveness of pimaricin-loaded thermosensitive nanohydrogels in grape juice

    Get PDF
    Pimaricin-loaded poly(N-isopropylacrylamide) nanohydrogels with and without acrylic acid, were evaluated as food-spoilage inhibitors in a model system and a real food product: grape juice. Pimaricin was proposed as a non-allergenic alternative to sulphites for protecting juices against recontamination. However, pimaricin may degrade under conditions and treatments (heating, acidification, lighting) commonly applied in producing fresh juices. Nanohydrogel encapsulation may be a feasible procedure to avoid pimaricin degradation, improving its antimicrobial activity. Pimaricin-free nanohydrogels did not affect the growth of the indicator yeast either in the food model system or in grape juice. Conversely, pimaricin-loaded nanohydrogels effectively inhibited the growth of the indicator yeast. In some cases, the inhibition was extended even further than using free pimaricin. For instance, in the food model system, pimaricin-loaded nanohydrogels with acrylic acid (NPPNIPA-20AA(5)) prevented the yeast growth for more than 81 h while free pimaricin was only effective for 12 h. Despite pimaricin-loaded nanohydrogels without acrylic acid (NPPNIPA(5)) were able to reduce maximum yeast growth, as in all treatments with pimaricin, the extent of the inhibitory effect was not significantly (p>0.05) different to that achieved with free pimaricin. In grape juice, both free pimaricin and NPPNIPA-20AA(5) treatment completely inhibited the growth of the indicator yeast until the end of the bioassay. However, the latter provided similar inhibition levels using a smaller amount of pimaricin due to PNIPA-20AA(5) protection and its controlled release from the nanohydrogel. Therefore, nanohydrogel encapsulation may help to optimise antifungal treatments and decrease the incidence of food allergies.Funded by grant (MAT 2006-11662-CO3-CO2-C01/MAT 2010-21509-C03-01/EUI 2008-00115) from the “Ministerio de Educación y Ciencia” (Spain). Grant (SFRH/BPD/87910/2012) from the Fundação para a Ciência e Tecnologia (FCT, Portugal). Marie Curie COFUND Postdoctoral Research Fellow

    Entarsenierungsanlage Riedbrunnen der Stadt Wachenheim/Weinstrasse

    No full text
    Arsenic concentrations of approximately 130 #mu#g/1 are present in the untreated waters from the Riedbrunnen deep bores in Wachenheim. Arsenic can be separated as iron arsenate in a filter by means of a treatment process in which hydrogen peroxide as oxidant and iron III salts as flocculating agent are added to the untreated water stream. In order to achieve the necessary filter sharpness, the filter selected was a two-layer filter having an upper packing of hydroanthracite. By means of this process, an arsenic content below the tolerance of 40 #mu#g/1 stated in the Drinking Water Ordinance could be achieved in the clean water. Arsenic concentrations of below 10 #mu#g/l were measured in the clean water in the analyses most recently carried out. The plant has been in operation since autumn 1990 and has been functioning up to now without serious faults. (orig.)SIGLEAvailable from TIB Hannover: RN 8422(1992,53) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Bonn (Germany)DEGerman
    corecore