15 research outputs found

    Mobilization of hematopoietic stem cells with the novel CXCR4 antagonist POL6326 (balixafortide) in healthy volunteers—Results of a dose escalation trial

    Get PDF
    Background: Certain disadvantages of the standard hematopoietic stem and progenitor cell (HSPC) mobilizing agent G-CSF fuel the quest for alternatives. We herein report results of a Phase I dose escalation trial comparing mobilization with a peptidic CXCR4 antagonist POL6326 (balixafortide) vs. G-CSF. Methods: Healthy male volunteer donors with a documented average mobilization response to G-CSF received, following ≄6 weeks wash-out, a 1–2 h infusion of 500–2500 ”g/kg of balixafortide. Safety, tolerability, pharmacokinetics and pharmacodynamics were assessed. Results: Balixafortide was well tolerated and rated favorably over G-CSF by subjects. At all doses tested balixafortide mobilized HSPC. In the dose range between 1500 and 2500 ”g/kg mobilization was similar, reaching 38.2 ± 2.8 CD34 + cells/”L (mean ± SEM). Balixafortide caused mixed leukocytosis in the mid-20 K/”L range. B-lymphocytosis was more pronounced, whereas neutrophilia and monocytosis were markedly less accentuated with balixafortide compared to G-CSF. At the 24 h time point, leukocytes had largely normalized. Conclusions: Balixafortide is safe, well tolerated, and induces efficient mobilization of HSPCs in healthy male volunteers. Based on experience with current apheresis technology, the observed mobilization at doses ≄1500 ”g/kg of balixafortide is predicted to yield in a single apheresis a standard dose of 4× 10E6 CD34+ cells/kg from most individuals donating for an approximately weight-matched recipient. Exploration of alternative dosing regimens may provide even higher mobilization responses. Trial Registration European Medicines Agency (EudraCT-Nr. 2011-003316-23) and clinicaltrials.gov (NCT01841476

    Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae

    Full text link
    The rise of antimicrobial resistance poses a substantial threat to our health system, and, hence, development of drugs against novel targets is urgently needed. The natural peptide thanatin kills Gram-negative bacteria by targeting proteins of the lipopolysaccharide transport (Lpt) machinery. Using the thanatin scaffold together with phenotypic medicinal chemistry, structural data, and a target-focused approach, we developed antimicrobial peptides with drug-like properties. They exhibit potent activity against Enterobacteriaceae both in vitro and in vivo while eliciting low frequencies of resistance. We show that the peptides bind LptA of both wild-type and thanatin-resistant Escherichia coli and Klebsiella pneumoniae strains with low-nanomolar affinities. Mode of action studies revealed that the antimicrobial activity involves the specific disruption of the Lpt periplasmic protein bridge

    Saccharomyces cerevisiae Cells with Defective Spindle Pole Body Outer Plaques Accomplish Nuclear Migration via Half-Bridge–organized Microtubules

    Get PDF
    Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Δ1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Δ1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating

    Nanoparticle-complexed antimiRs for inhibiting tumor growth and metastasis in prostate carcinoma and melanoma

    Get PDF
    Background: MiRNAs act as negative regulators of gene expression through target mRNA degradation or inhibition of its translation. In cancer, several miRNAs are upregulated and play crucial roles in tumorigenesis, making the inhibition of these oncomiRs an interesting therapeutic approach. This can be achieved by directly complementary single-stranded anti-miRNA oligonucleotides (antimiRs). A major bottleneck in antimiR therapy, however, is their efficient delivery. The nanoparticle formation with polyethylenimine (PEI) may be particularly promising, based on the PEI’s ability to electrostatically interact with oligonucleotides. This leads to their protection and supports delivery. In the present study, we explore for the first time PEI for antimiR formulation and delivery. We use the branched low molecular weight PEI F25-LMW for the complexation of different antimiRs, and analyse tumor- and metastasis-inhibitory effects of PEI/antimiR complexes in different tumor models. Results: In prostate carcinoma, transfection of antimiRs against miR-375 and miR-141 leads to tumor cell inhibition in 2D- and 3D-models. More importantly, an in vivo tumor therapy study in prostate carcinoma xenografts reveals anti-tumor effects of the PEI/antimiR complexes. In advanced melanoma and metastasis, we identify by a microRNA screen miR-150 as a particularly relevant oncomiR candidate, and validate this result in vitro and in vivo. Again, the systemic application of PEI/antimiR complexes inhibiting this miRNA, or the previously described antimiR-638, leads to profound tumor growth inhibition. These effects are associated with the upregulation of direct miRNA target genes. In a melanoma metastasis mouse model, anti-metastatic effects of PEI/antimiR treatment are observed as well. Conclusions: We thus describe PEI-based complexes as efficient platform for antimiR therapy, as determined in two different tumor entities using in vivo models of tumor growth or metastasis. Our study also highlights the therapeutic relevance of miR-375, miR-141, miR-150 and miR-638 as target miRNAs for antimiR-mediated inhibition
    corecore