48 research outputs found

    Extremely high absolute internal quantum efficiency of photoluminescence in co-doped GaN:Zn,Si

    Get PDF
    We report on the fabrication of GaN co-doped with silicon and zinc by metalorganic vapor phase epitaxy and a detailed study of photoluminescence in this material. We observe an exceptionally high absolute internal quantum efficiency of blue photoluminescence in GaN:Zn,Si. The value of0.93±0.04 has been obtained from several approaches based on rate equations

    Migratory and winter activity of bats in Yellowstone National Park

    Get PDF
    A substantial body of work exists describing timing of migration and hibernation among bats in eastern North America, but less is known about these events among bats inhabiting the Rocky Mountain region. Yellowstone National Park is a geothermally influenced landscape comprised of diverse habitats, creating the opportunity for unique behaviors to develop among local bat populations. We identified the timing of migration for the local bat community and determined if bats overwinter in Yellowstone. To accomplish this, we radiotracked 7 little brown myotis (Myotis lucifugus), 5 western long-eared myotis (M. evotis), 4 big brown bats (Eptesicus fuscus), 4 silver-haired bats (Lasionycteris noctivagans), and 1 western small-footed myotis (M. ciliolabrum) from August to September 2010 and September to October 2011. We also used acoustic detectors to record bat activity from November through April 2011–2014 and sampled abundance of nocturnal insects using black-light traps from 2011 to 2012. Although availability of insects declined rapidly during August and afterward, several bat species remained active throughout autumn and winter. Bat activity was recorded during all months, even during periods of extreme cold. Radiotagged big brown bats, little brown myotis, and western small-footed myotis remained active in the study area throughout October, after the 1st snowfall of the season. While data for activity patterns in late autumn and winter prevented an estimation of the onset of hibernation, spring emergence occurred in April despite persistence of winter conditions. These data provide insights into the migration and hibernation strategies of bat populations in the Rocky Mountains and highlight gaps in our understanding of seasonal changes in these species

    Plasma Profiling Time-of-Flight Mass Spectrometry for Fast Elemental Analysis of Semiconductor Structures with Depth Resolution in the Nanometer Range

    Get PDF
    Plasma profiling time of flight mass spectrometry (PP-TOFMS) has recently gained interest, as it enables the elemental profiling of semiconductor structures with high depth resolution in short acquisition times. As recently shown by Tempez et al., PP-TOFMS can be used to obtain the composition in the structures for modern field effect transistors [1]. There, the results were compared to conventional SIMS measurements. In the present study, we compare PP-TOFMS measurements of an Al-/In-/GaN quantum well multi stack to established micro- and nano-analysis techniques like cathodoluminescence (CL), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). We show that PP-TOFMS is able to resolve the layer structure of the sample even more than 500 nm deep into the sample and allows the determination of a relative elemental composition with an accuracy of about 10 rel. %. Therefore, it is an extremely rapid alternative method to obtain semiconductor elemental depth profiles without expensive and time consuming sample preparation as it is needed for TEM. Besides, PP-TOFMS offers better depth resolution and more elemental information than for example electrochemical capacitance-voltage (ECV), as the acquisition of all elements occurs in parallel and not only electrically (ECV) or optically (CL) active elements are observed

    Imaging the mechanical properties of nanowire arrays

    Get PDF
    Dimensional and contact resonance (CR) images of nanowire (NW) arrays are measured using our new-developed CR imaging (CRI) setup. Then a reference method is employed to calculate the indentation modulus of NWs (Mi,NW) representing the elasticity of NWs, by measuring NW arrays (NWAs) and reference samples at the same static probing force. Furthermore, topography is imaged in combination with CR and Mi,NW separately by software, whereby the relation between both parameters of NWAs is visualized. As typical examples, 3D imaging of topography and Mi,NW is performed with Si pillar, Cu and ZnO NWAs. The novel method allows for fast mechanical performance measurements of large-scale vertically-aligned NW arrays (NWAs) without releasing them from their substrates

    A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes

    Get PDF
    Selectivity and low power consumption are major challenges in the development of sophisticated gas sensor devices. A sensor system is presented that unifies selective sensor-gas interactions and energy-harvesting properties, using defined organic-inorganic hybrid materials. Simulations of chemical-binding interactions and the consequent electronic surface modulation give more insight into the complex sensing mechanism of selective gas detection

    Integrated Strategy toward Self-Powering and Selectivity Tuning of Semiconductor Gas Sensors

    Get PDF
    Inorganic conductometric gas sensors struggle to overcome limitations in high power consumption and poor selectivi-ty. Herein, recent advances in developing self-powered gas sensors with tunable selectivity are introduced. Alternative general approaches for powering gas sensors were realized via proper integration of complementary functionalities (namely; powering and sensing) in a singular heterostructure. These solar light driven gas sensors operating at room temperature without applying any additional external powering sources are comparatively discussed. The TYPE-1 gas sensor based on integration of pure inorganic interfaces (e.g. CdS/n-ZnO/p-Si) is capable of delivering a self-sustained sensing response, while it shows a non-selective interaction towards oxidizing and reducing gases. The structural and the optical merits of TYPE-1 sensor are investigated giving more insights into the role of light activation on the modu-lation of the self-powered sensing response. In the TYPE-2 sensor, the selectivity of inorganic materials is tailored through surface functionalization with self-assembled organic monolayers (SAMs). Such hybrid interfaces (e.g. SAMs/ZnO/p-Si) have specific surface interactions with target gases compared to the non-specific oxidation-reduction interactions governing the sensing mechanism of simple inorganic sensors. The theoretical modeling using density functional theory (DFT) has been used to simulate the sensing behavior of inorganic/organic/gas interfaces, revealing that the alignment of organic/gas frontier molecular orbitals with respect to the inorganic Fermi level is the key factor for tuning selectivity. These platforms open new avenues for developing advanced energy-neutral gas sensing devices and concepts

    Structure and Composition of Isolated Core-Shell(In,Ga)N/GaNRods Based on Nanofocus X-Ray Diffraction and Scanning Transmission Electron Microscopy

    Get PDF
    Nanofocus x-ray diffraction is used to investigate the structure and local strain field of an isolated ðIn; GaÞN=GaN core-shell microrod. Because the high spatial resolution of the x-ray beam is only 80 × 90 nm2, we are able to investigate several distinct volumes on one individual side facet. Here, we find a drastic increase in thickness of the outer GaN shell along the rod height. Additionally, we performed highangle annular dark-field scanning-transmission-electron-microscopy measurements on several rods from the same sample showing that (In,Ga)N double-quantum-well and GaN barrier thicknesses also increase strongly along the height. Moreover, plastic relaxation is observed in the top part of the rod. Based on the experimentally obtained structural parameters, we simulate the strain-induced deformation using the finiteelement method, which serves as the input for subsequent kinematic scattering simulations. The simulations reveal a significant increase of elastic in-plane relaxation along the rod height. However, at a certain height, the occurrence of plastic relaxation yields a decrease of the elastic strain. Because of the experimentally obtained structural input for the finite-element simulations, we can exclude unknown structural influences on the strain distribution, and we are able to translate the elastic relaxation into an indium concentration which increases by a factor of 4 from the bottom to the height where plastic relaxation occurs

    Использование голосового интерфейса для взаимодействия пользователя с веб-сервисом

    Get PDF
    В статье рассмотрены виды существующих интерфейсов взаимодействия пользователя с ЭВМ, приводится сравнительный анализ характеристик интерфейсов. Подробно рассматривается голосовой интерфейс и его использование для взаимодействия пользователя с веб-сервисом

    Novel approaches towards highly selective self-powered gas sensors

    Get PDF
    The prevailing design approaches of semiconductor gas sensors struggle to overcome most of their current limitations such as poor selectivity, and high power consumption. Herein, a new sensing concept based on devices that are capable of detecting gases without the need of any external power sources required to activate interaction of gases with sensor or to generate the sensor read out signal. Based on the integration of complementary functionalities (namely; powering and sensing) in a singular nanostructure, self-sustained gas sensors will be demonstrated. Moreover, a rational methodology to design organic surface functionalization that provide high selectivity towards single gas species will also be discussed. Specifically, theoretical results, confirmed experimentally, indicate that precisely tuning of the sterical and electronic structure of sensor material/organic interfaces can lead to unprecedented selectivity values, comparable to those typical of bioselective processes. Finally, an integrated gas sensor that combine both the self-powering and selective detection strategies in one single device will also be presented
    corecore