273 research outputs found

    Protein-complex structure completion using IPCAS (Iterative Protein Crystal structure Automatic Solution)

    Get PDF
    published_or_final_versio

    Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    Get PDF
    In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs) is achieved using atomic layer deposition (ALD). Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL) measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials

    Synthesis and characterization of CuO nanowires by a simple wet chemical method

    Get PDF
    We report a successful synthesis of copper oxide nanowires with an average diameter of 90 nm and lengths of several micrometers by using a simple and inexpensive wet chemical method. The CuO nanowires prepared via this method are advantageous for industrial applications which require mass production and low thermal budget technique. It is found that the concentration and the quantity of precursors are the critical factors for obtaining the desired one-dimensional morphology. Field emission scanning electron microscopy images indicate the influence of thioglycerol on the dispersity of the prepared CuO nanowires possibly due to the stabilization effect of the surface caused by the organic molecule thioglycerol. The Fourier transform infrared spectrum analysis, energy dispersive X-ray analysis, X-ray diffraction analysis, and X-ray photoemission spectrum analysis confirm clearly the formation of a pure phase high-quality CuO with monoclinic crystal structure

    Prevalence and severity of antipsychotic related constipation in patients with schizophrenia: a retrospective descriptive study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antipsychotic are the cornerstone in the treatment of schizophrenia. They also have a number of side-effects. Constipation is thought to be common, and a potential serious side-effect, which has received little attention in recent literature.</p> <p>Method</p> <p>We performed a retrospective study in consecutively admitted patients, between 2007 and 2009 and treated with antipsychotic medication, linking different electronic patient data to evaluate the prevalence and severity of constipation in patients with schizophrenia under routine treatment conditions.</p> <p>Results</p> <p>Over a period of 22 months 36.3% of patients (99) received at least once a pharmacological treatment for constipation. On average medication for constipation was prescribed for 273 days. Severe cases (N = 50), non-responsive to initial treatment, got a plain x-ray of the abdomen. In 68.4% fecal impaction was found.</p> <p>Conclusion</p> <p>A high prevalence of constipation, often severe and needing medical interventions, was confirmed during the study period. Early detection, monitoring over treatment and early intervention of constipation could prevent serious consequences such as ileus.</p

    A RG-II type polysaccharide purified from Aconitum coreanum and their anti-inflammatory activity

    Get PDF
    Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation

    DCs Pulsed with Novel HLA-A2-Restricted CTL Epitopes against Hepatitis C Virus Induced a Broadly Reactive Anti-HCV-Specific T Lymphocyte Response

    Get PDF
    OBJECTIVE: To determine the capacity of dendritic cells (DCs) loaded with single or multiple-peptide mixtures of novel hepatitis C virus (HCV) epitopes to stimulate HCV-specific cytotoxic T lymphocyte (CTL) effector functions. METHODS: A bioinformatics approach was used to predict HLA-A2-restricted HCV-specific CTL epitopes, and the predicted peptides identified from this screen were synthesized. Subsequent IFN-Îł ELISPOT analysis detected the stimulating function of these peptides in peripheral blood mononuclear cells (PBMCs) from both chronic and self-limited HCV infected subjects (subjects exhibiting spontaneous HCV clearance). Mature DCs, derived in vitro from CD14(+) monocytes harvested from the study subjects by incubation with appropriate cytokine cocktails, were loaded with novel peptide or epitope peptide mixtures and co-cultured with autologous T lymphocytes. Granzyme B (GrB) and IFN-Îł ELISPOT analysis was used to test for epitope-specific CTL responses. T-cell-derived cytokines contained in the co-cultured supernatant were detected by flow cytometry. RESULTS: We identified 7 novel HLA-A2-restricted HCV-specific CTL epitopes that increased the frequency of IFN-Îł-producing T cells compared to other epitopes, as assayed by measuring spot forming cells (SFCs). Two epitopes had the strongest stimulating capability in the self-limited subjects, one found in the E2 and one in the NS2 region of HCV; five epitopes had a strong stimulating capacity in both chronic and self-limited HCV infection, but were stronger in the self-limited subjects. They were distributed in E2, NS2, NS3, NS4, and NS5 regions of HCV, respectively. We also found that mDCs loaded with novel peptide mixtures could significantly increase GrB and IFN-Îł SFCs as compared to single peptides, especially in chronic HCV infection subjects. Additionally, we found that DCs pulsed with multiple epitope peptide mixtures induced a Th1-biased immune response. CONCLUSIONS: Seven novel and strongly stimulating HLA-A2-restricted HCV-specific CTL epitopes were identified. Furthermore, DCs loaded with multiple-epitope peptide mixtures induced epitope-specific CTLs responses

    A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins

    Get PDF
    Subcellular locations of proteins are important functional attributes. An effective and efficient subcellular localization predictor is necessary for rapidly and reliably annotating subcellular locations of proteins. Most of existing subcellular localization methods are only used to deal with single-location proteins. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. To better reflect characteristics of multiplex proteins, it is highly desired to develop new methods for dealing with them. In this paper, a new predictor, called Euk-ECC-mPLoc, by introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and hybridizing gene ontology with dipeptide composition information, has been developed that can be used to deal with systems containing both singleplex and multiplex eukaryotic proteins. It can be utilized to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome, (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole. Experimental results on a stringent benchmark dataset of eukaryotic proteins by jackknife cross validation test show that the average success rate and overall success rate obtained by Euk-ECC-mPLoc were 69.70% and 81.54%, respectively, indicating that our approach is quite promising. Particularly, the success rates achieved by Euk-ECC-mPLoc for small subsets were remarkably improved, indicating that it holds a high potential for simulating the development of the area. As a user-friendly web-server, Euk-ECC-mPLoc is freely accessible to the public at the website http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-mPLoc/. We believe that Euk-ECC-mPLoc may become a useful high-throughput tool, or at least play a complementary role to the existing predictors in identifying subcellular locations of eukaryotic proteins

    Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

    Get PDF
    BackgroundTargeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.ResultsAll panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.ConclusionThis comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.Peer reviewe

    Super-resolution:A comprehensive survey

    Get PDF
    • …
    corecore