18 research outputs found

    Code renewability for native software protection

    Get PDF
    Software protection aims at safeguarding assets embedded in software by preventing and delaying reverse engineering and tampering attacks. This article presents an architecture and supporting tool flow to renew parts of native applications dynamically. Renewed and diversified code and data belonging to either the original application or to linked-in protections are delivered from a secure server to a client on demand. This results in frequent changes to the software components when they are under attack, thus making attacks harder. By supporting various forms of diversification and renewability, novel protection combinations become available and existing combinations become stronger. The prototype implementation is evaluated on several industrial use cases

    FPL: White-Box Secure Block Cipher Using Parallel Table Look-Ups

    Get PDF
    In this work, we propose a new table-based block cipher structure, dubbed FPL\mathsf{FPL}, that can be used to build white-box secure block ciphers. Our construction is a balanced Feistel cipher, where the input to each round function determines multiple indices for the underlying table via a probe function, and the sum of the values from the table becomes the output of the round function. We identify the properties of the probe function that make the resulting block cipher white-box secure in terms of weak and strong space hardness against known-space and non-adaptive chosen-space attacks. Our construction, enjoying rigorous provable security without relying on any ideal primitive, provides flexibility to the block size and the table size, and permits parallel table look-ups. We also propose a concrete instantiation of FPL\mathsf{FPL}, dubbed FPLAES\mathsf{FPL}_{\mathsf{AES}}, using (round-reduced) AES\mathsf{AES} for the underlying table and probe functions. Our implementation shows that FPLAES\mathsf{FPL}_{\mathsf{AES}} provides stronger security without significant loss of efficiency, compared to existing schemes including SPACE\mathsf{SPACE}, WhiteBlock\mathsf{WhiteBlock} and WEM\mathsf{WEM}

    Efficient and Provable White-Box Primitives

    Get PDF
    International audienceIn recent years there have been several attempts to build white-box block ciphers whose implementations aim to be incompress-ible. This includes the weak white-box ASASA construction by Bouil-laguet, Biryukov and Khovratovich from Asiacrypt 2014, and the recent space-hard construction by Bogdanov and Isobe from CCS 2015. In this article we propose the first constructions aiming at the same goal while offering provable security guarantees. Moreover we propose concrete instantiations of our constructions, which prove to be quite efficient and competitive with prior work. Thus provable security comes with a surprisingly low overhead
    corecore