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Abstract. In this work, we propose a new table-based block cipher
structure, dubbed FPL, that can be used to build white-box secure block
ciphers. Our construction is a balanced Feistel cipher, where the input to
each round function determines multiple indices for the underlying table
via a probe function, and the sum of the values from the table becomes
the output of the round function. We identify the properties of the probe
function that make the resulting block cipher white-box secure in terms
of weak and strong space hardness against known-space and non-adaptive
chosen-space attacks. Our construction, enjoying rigorous provable se-
curity without relying on any ideal primitive, provides flexibility to the
block size and the table size, and permits parallel table look-ups.
We also propose a concrete instantiation of FPL, dubbed FPLAES, using
(round-reduced) AES for the underlying table and probe functions. Our
implementation shows that FPLAES provides stronger security without
significant loss of efficiency, compared to existing schemes including
SPACE, WhiteBlock and WEM.
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1 Introduction

The white-box threat model in cryptography, introduced by Chow et al. [9] in
2002, assumes that the adversary is accessible to the entire information on the
encryption process, and can even change parts of it at will. Numerous primitives
claiming for security at the white-box model were proposed in the last few years.
These primitives can be roughly divided into two classes.

The first class includes algorithms which take an existing block cipher (usually
AES or DES), and use various methods (e.g., based on large look-up tables and
random encodings) to obfuscate the encryption process, so that a white-box
adversary will not be able to extract the secret key. Pioneered by Chow et
? Jooyoung Lee was supported by a National Research Foundation of Korea (NRF)
grant funded by the Korean government (Ministry of Science and ICT), No. NRF-
2017R1E1A1A03070248.



al. [9], this approach was followed by quite a few designers. Unfortunately,
most of these designs were broken by practical attacks a short time after their
presentation [3, 14, 17], and the remaining ones are very recent and have not
been subjected to extensive cryptanalytic efforts yet.

The second class includes new cryptographic primitives designed with white-
box protection in mind. Usually such designs are based on key-dependent tables,
designed in such a way that even if a white-box adversary can recover the full
dictionary of such a table, it still cannot use this knowledge to recover the secret
key. Stronger security notions than key extraction hardness are also considered in
the provable security setting. In this line of research, a number of block ciphers
have been proposed, including ASASA [4], SPACE [6], SPNbox [7], WhiteBlock [12],
and WEM [8].3 Alternatively, key generators have also been proposed that are
claimed to be secure in the white-box model. In this case, an initial vector is
chosen uniformly at random, and it determines the corresponding secret key via
the key generator. With this key, a plaintext is encrypted using a conventional
block cipher such as AES, and the resulting ciphertext is sent to the recipient
together with the initial vector. This approach has been rigorously analyzed in
the bounded retrieval model [2, 1]. However, key generators might not be suitable
for protecting data at rest in any stable medium since an adversary might try to
exploit the initial vector first, and then the corresponding table entries to recover
the secret key.

As the white-box security notion for our construction, we will consider space
hardness [6, 7] (also called incompressibility [11] and weak white-box security [4]),
meaning that an adversary with access to the white-box implementation cannot
produce a functionally equivalent program of significantly smaller size. This
property is needed, as a white-box adversary can perform code lifting, i.e., extract
the entire code and use it as an equivalent secret key. While space hardness
does not make code lifting impossible, it does make it harder to implement in
practice. The attack models can be classified into three types: known-space attack,
non-adaptive chosen-space attack and adaptive chosen-space attack (as described
in Section 2 in detail).

1.1 Our Contribution

In this work, we propose a new table-based block cipher construction, dubbed
FPL (Feistel cipher using Parallel table Look-ups), that can be used to build
white-box secure block ciphers. FPL is a balanced Feistel cipher, where the input
to each round function determines multiple indices for the underlying table via a
probe function, and the sum of the values from the table becomes the output of
the round function (see Figure 1). The motivation behind our design (compared
to existing constructions) can be listed as follows.

– The block size and the table size can be chosen flexibly, compared to
substitution-permutation ciphers such as SPNbox, WhiteBlock and WEM

3 Some instantiations of ASASA have been broken [13, 16].
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using 128-bit dedicated block ciphers as their components. For this rea-
son, FPL might be suitable for protecting database, e.g., format preserving
encryption.4

– The underlying table is easy to generate (compared to substitution-permutation
ciphers) since they do not need to be bijective.

– Encryption can be made faster in an environment where parallel or pipelined
table look-ups are possible (compared to SPACE).

Provable security of FPL depends on the properties of the probe function; we
identify such properties, dubbed superposedness and linear independence, that
make the resulting block cipher white-box secure. Assuming these properties, we
prove the security of FPL in terms of weak and strong space hardness against
known-space and non-adaptive chosen-space attacks. Our security proof does not
rely on the randomness of the probe function. On the other hand, we show that
a random function satisfies the desirable properties except with negligible proba-
bility. This observation will be useful particularly when we use a pseudorandom
function (e.g., a block cipher with a fixed key) to construct a probe function.

From a practical point of view, we propose a concrete instantiation of FPL,
dubbed FPLAES, using (round-reduced) AES for the underlying table and probe
functions. Our implementation shows that FPLAES provides stronger security
without significant loss of efficiency, compared to existing schemes including
SPACE, WhiteBlock and WEM. To make a fair comparison, we focused on AES-
based constructions, not including SPNbox as it is a fully dedicated construction.
We also remark that Lin et al. proposed an unbalanced Feistel-type white-box
secure construction [15], while its security has not been proved nor claimed in
terms of space hardness; their security model seems to be incomparable to space
hardness.

Discussion. The known-space attack models the limited control of the adversary
over the platform and captures trojans, malwares and memory-leakage software
vulnerability, while the chosen-space attack captures stronger adversarial ability to
isolate a certain part of the underlying table and send it out via a communication
channel with a limited capacity. In particular, the adaptive chosen-space attack,
which is the most powerful attack, assumes an adversary with full access to
the table at any time during the execution of the block cipher. However, it
should be noted that strong space hardness cannot be achieved against adaptive
chosen-space attacks for any (table-based) white-box design; an adversary would
be able to fix an arbitrary plaintext, and exploit all the table entries needed
to compute the corresponding ciphertext. As for weak space hardness of FPL
against adaptive chosen-space attacks, we provides only a heuristic argument
using the approach given in [7].

4 It would also be possible to tweak the probe function when it is instantiated with a
pseudorandom function such as AES.
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Fig. 1: The i-th round of FPL with four table look-ups. The probe function and
the secret table of the i-th round are denoted by g and Fi, respectively.

2 Preliminaries

2.1 Table-based Block Cipher

(Conventional) Block Cipher. Let κ and n be positive integers. An n-bit
block cipher using κ-bit keys is a function family

E : {0, 1}κ × {0, 1}n → {0, 1}n

such that for all k ∈ {0, 1}κ the mapping E(k, ·) is a permutation on {0, 1}n.

Table-based Block Cipher. For positive integers s and t, a table with s-bit
inputs and t-bit outputs can be viewed as a function

f : {0, 1}s → {0, 1}t.

By viewing this table as a key of a block cipher, we will consider a table-based
block cipher

Ẽ : Fs,t × {0, 1}n → {0, 1}n

where Fs,t denotes the set of all functions from {0, 1}s to {0, 1}t bits, and for
each f ∈ Fs,t the mapping Ẽ(f, ·) is a permutation on {0, 1}n. A table-based
block cipher Ẽ using a secret table f ∈ Fs,t will be written as Ẽ[f ]. A main
difference of a table-based block cipher from conventional ones is that Ẽ[f ] is
assumed to make a fixed number of oracle queries (or table look-ups) to the
underlying table f in its implementation. By a table-look up with an s-bit input
x, f(x) will be returned.

Keyed-table-based Block Cipher. A pair of a table-based block cipher Ẽ
and a family of tables

F : {0, 1}κ × {0, 1}s → {0, 1}t
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will be called a keyed-table-based block cipher.5 Each key k ∈ {0, 1}κ defines
an n-bit permutation Ẽ[F (k, ·)] as in a conventional block cipher, while in its
white-box implementation, the keyed table F (k, ·) will be stored instead of the
key k.

2.2 Security Notions

Let (Ẽ, F ) be a keyed-table-based block cipher. At the beginning of the attack,
an adversary A is allowed access to the table F (k, ·), where k is chosen uniformly
at random from {0, 1}κ and kept secret to the adversary. More precisely, we will
assume that A makes q oracle queries to F (k, ·) for a positive integer q. In this
phase, we can distinguish three different types of attacks as follows.

1. Known-space attack (KSA): A obtains q pairs of inputs and the corresponding
outputs of F (k, ·), namely (xi, F (k, xi)), i = 1, . . . , q, where xi are randomly
chosen from {0, 1}s without replacement.

2. Non-adaptive chosen-space attack (NCSA): A chooses a priori q inputs xi
and obtains the corresponding outputs F (k, xi) for i = 1, . . . , q.

3. Adaptive chosen-space attack (CSA): A adaptively chooses q inputs xi and
obtains the corresponding outputs F (k, xi) for i = 1, . . . , q. (So A is allowed
to choose xj based on the previous responses F (k, xi), i = 1, . . . , j − 1.)

After making all the oracle queries to the table, A is supposed to achieve a certain
security goal. We will consider three different goals, defining three notions of
security.

Weak Space Hardness. A is given a random plaintext u ∈ {0, 1}n, and asked
to encrypt Ẽ[F (k, ·)](u). Note that A makes oracle queries to F (k, ·) without
knowing the plaintext u. So in the definition of the adversarial advantage, A
consists of two phases A1 and A2, where A1 relays a certain state σ to A2 after
making oracle queries to the underlying table, and A2 tries to find v on receipt
of σ and u.

Advatk-wsh
Ẽ,F

(A)

= Pr
[
k

$← {0, 1}κ, u $← {0, 1}n, σ ← AF (k,·)
1 , v ← A2(σ, u) : v = Ẽ[F (k, ·)](u)

]
,

where atk ∈ {ksa, ncsa, csa} represents the attack model.

Strong Space Hardness. A is asked to come up with a valid plaintext-
ciphertext pair (u, v) such that v = Ẽ[F (k, ·)](u). The adversarial advantage is
formally defined as follows: for atk ∈ {ksa, ncsa, csa},

Advatk-ssh
Ẽ,F

(A) = Pr
[
k

$← {0, 1}κ, (u, v)← AF (k,·) : v = Ẽ[F (k, ·)](u)
]
.

5 A table-based block cipher Ẽ can be regarded as keyed since each table in Fs,t can
be indexed by t · 2s bits.
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Key Extraction Hardness. A is asked to recover the secret key k. The
adversarial advantage is formally defined as

Advatk-keh
Ẽ,F

(A) = Pr
[
k

$← {0, 1}κ, k′ ← AF (k,·) : k′ = k
]
.

For q, τ > 0 and (atk, sec) ∈ {ksa, ncsa, csa} × {wsh, ssh, keh}, we define

Advatk-sec
Ẽ,F

(q, τ) = max
A

Advatk-sec
Ẽ,F

(A),

where the maximum is taken over all adversaries A running in time τ and making
at most q queries.

Pseudorandomness. Later, we will consider the security of F in terms of its
pseudorandomness (as a keyed function family); in this notion of security, A
would like to tell apart two worlds F (k, ·) and a truly random function f by
adaptively making (forward) queries to the function, where k is chosen uniformly
at random from the key space and kept secret to A, while f is chosen uniformly
at random from Fs,t. Formally, A’s distinguishing advantage is defined by

Advprf
F (A) =

∣∣∣Pr
[
f

$← Fs,t : 1← Af
]
− Pr

[
k

$← {0, 1}κ : 1← AF (k,·)
]∣∣∣ .

For q, τ > 0, we define

Advprf
F (q, τ) = max

A
Advprf

F (A),

where the maximum is taken over all adversaries A running in time τ and making
at most q queries.

3 FPL: Block Cipher using Parallel Table Look-Ups

In this section, we define the FPL keyed-table-based block cipher. This construc-
tion is a Feistel cipher; let n and r denote the block size and the number of
rounds, respectively. We will assume that n is even, writing n = 2m for a positive
integer m. For a (keyed) round function H from m-bits to m-bits, let Φ[H] denote
a single-round Feistel cipher such that

Φ[H](uL, uR) = (uR, uL ⊕H(uR))

for (uL, uR) ∈ {0, 1}m×{0, 1}m (identifying {0, 1}n with {0, 1}m×{0, 1}m). The
FPL block cipher is an r-round balanced Feistel cipher;

FPL = Φ[Hr] ◦ · · · ◦ Φ[H2] ◦ Φ[H1]

for r round functions Hi, i = 1, . . . , r.

6



Round Functions of FPL. Once parameters κ, s, d are fixed, each round
function Hi, i = 1, . . . , r, is defined by a probe function

g : {0, 1}m → ({0, 1}s)d

and a keyed table

F : {0, 1}κ × ({1, . . . , r} × {1, . . . , d} × {0, 1}s)→ {0, 1}m.

We separate this table into smaller ones by writing Fi,j = F (·, i, j, ·) for i ∈
{1, . . . , r} and j ∈ {1, . . . , d}. Then for x ∈ {0, 1}m,

Hi(x) = Fi,1(y1)⊕ Fi,2(y2)⊕ · · · ⊕ Fi,d(yd),

where we write g(x) = (y1, y2, . . . , yd) ∈ ({0, 1}s)d. In this way, FPL becomes a
keyed-table-based block cipher that encrypts n-bit blocks using a κ-bit key. The
size of the underlying keyed table is rdm2s bits.

Security Requirements for Probe Functions. The (provable) security
of FPL depends on the property of its probe function. We need the following
definitions.

Definition 1. Let p and q be positive integers, and let g : {0, 1}m → ({0, 1}s)d.
If for any subsets Y1, . . . , Yd ⊂ {0, 1}s such that |Y1|+ · · ·+ |Yd| ≤ q,

|{x ∈ {0, 1}m : g(x) ∈ Y1 × · · · × Yd}| < p,

then we will say that g is (p, q)-superposing.

Definition 2. Given a function g : {0, 1}m → ({0, 1}s)d, the incidence matrix
of g, denoted Mg, is a 2m× d2s zero-one matrix, where the rows and the columns
are indexed by {0, 1}m and {1, . . . , d} × {0, 1}s, respectively, and (Mg)x,(j,yj) = 1
for j = 1, . . . , d if and only if g(x) = (y1, y2, . . . , yd).

Note that each row of Mg contains exactly d 1’s.

Definition 3. Let ` be a positive integer, and let g : {0, 1}m → ({0, 1}s)d. If any
` rows of Mg are linearly independent over GF(2), then g is called `-independent.

The superposedness and linear independence of the probe function will turn out
to be essential in the security proof of FPL.

4 Probabilistic Construction of Secure Probe Functions

In this section, we will consider probabilistic construction of secure probe functions.
This approach is relevant when we instantiate the probe function with a block
cipher (adding a prefix to inputs and truncating its outputs) in practice, since
a block cipher is typically modeled as a pseudorandom function. So we will see
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how the randomness of the probe function is related to the security requirements
discussed in Section 3, namely the superposedness and the linear independence.

Once we fix an integer q such that 0 ≤ q ≤ d2s, and subsets Y1, . . . , Yd ⊂
{0, 1}s such that |Y1| + · · · + |Yd| = q, then a random function g : {0, 1}m →
({0, 1}s)d will map an element of {0, 1}m to an element of Y1 × · · · × Yd with
probability

∏d
i=1 (|Yi|/2s), which is upper bounded by qd/(d2s)d. So the number

of x ∈ {0, 1}m such that g(x) ∈ Y1 × · · · × Yd will be close to 2mqd/(d2s)d. This
intuition is formalized in the following lemma.

Lemma 1. Let λ be a positive integer. A random function g : {0, 1}m →
({0, 1}s)d is (p(q), q)-superposing for every q such that 0 ≤ q ≤ d2s except
with probability at most 2−λ, where

p(q) = 3
( q

d2s
)d

2m + d2s + λ.

Proof. Let c = q/(d2s), where 0 ≤ c ≤ 1, and let

δ = d2s + λ

cd2m + 2

as a function in c. So we have p = (1+δ)cd2m. We fix subsets Y1, . . . , Yd ⊂ {0, 1}s
such that |Y1|+ · · ·+ |Yd| = q.

For each x ∈ {0, 1}m, let Yx be a random variable, where Yx = 1 if g(x) ∈
Y1 × · · · × Yd, and Yx = 0 otherwise. Random variables Yx, x ∈ {0, 1}m, are all
independent, and Pr [Yx = 1] ≤ cd for every x ∈ {0, 1}m. Let Zx, x ∈ {0, 1}m,
be independent Bernoulli random variables such that Pr [Zx = 1] = cd and
Pr [Zx = 0] = 1− cd. We can couple Yx and Zx so that Zx = 1 whenever Yx = 1.

Let Y =
∑
x∈{0,1}m Yx and let Z =

∑
x∈{0,1}m Zx. Then Y counts the

number of x ∈ {0, 1}m such that g(x) ∈ Y1 × · · · × Yd, while Z is the sum of
independent Bernoulli random variables such that Ex [Z] = cd2m. By applying
the Chernoff bound to the variable Z, we obtain

Pr [Y ≥ p] ≤ Pr
[
Z ≥ (1 + δ)cd2m

]
≤ e−

δ2·cd·2m
2+δ ≤ e−(δ−2)cd2m = e−(d2s+λ).

Since the number of possible choices for subsets Y1, . . . , Yd ⊂ {0, 1}s is upper
bounded by

d2s∑
q=0

(
d2s

q

)
= 2d2s ,

we can use the union bound to conclude that a random function g : {0, 1}m →
({0, 1}s)d is (p, q)-superposing for every q such that 0 ≤ q ≤ d2s except with
probability at most 2d2s · e−(d2s+λ), where 2d2s · e−(d2s+λ) ≤ 2−λ. ut
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Lemma 2. For a positive integer `, a random function g : {0, 1}m → ({0, 1}s)d
is `-independent except with probability at most

Pm,s,d,`
def=
b `2 c∑
j=1

(
jd−2

2ds−2m−1

)j
.

If 2ds−2m−2 ≥
(
e`
2
)d−2, then we have Pm,s,d,` ≤ 1

2ds−2m−2 .

Proof. A probe function g : {0, 1}m → ({0, 1}s)d defines a 2m × d2s incidence
matrix Mg. This matrix can be viewed as obtained by concatenating d matrices
Mg[i], i = 1, . . . , d, where the rows and the columns of Mg[i] are indexed by
{0, 1}m and {0, 1}s, respectively, and (Mg)[i]x,y = 1 if the i-th entry of g(x) is
y and (Mg)[i]x,y = 0 otherwise. When g is chosen uniformly at random, the
position of the nonzero entry will also be random and independent for each row
of (Mg)[i], i = 1, . . . , d.

Let Mg[i]x denote the row of Mg[i] indexed by x ∈ {0, 1}m. If g is not `-
independent, then there will be indices x1, . . . , x2j ∈ {0, 1}m for a positive integer
j such that 2j ≤ `, satisfying

Mg[i]x1 ⊕Mg[i]x2 ⊕ · · · ⊕Mg[i]x2j−1 ⊕Mg[i]x2j = 0 (1)

for every i = 1, . . . , d, where 0 denotes the zero vector. In order for (1) to hold
for a fixed i ∈ {1, . . . , d} and a set of indices X = {x1, . . . , x2j} ⊂ {0, 1}m,
there should be a perfect matching in a complete graph on X (or equivalently
an involution without fixed points on X) such that for any edge {xα, xβ} the
corresponding rows have “1” at the same position. For a fixed edge {xα, xβ}, the
corresponding rows have “1” at the same position with probability 1/2s over the
randomness of g. Since the number of perfect matchings is

(2j − 1) · (2j − 3) · · · · · 3 · 1 = (2j)!
2jj! ,

and Mg[1], . . . ,Mg[d] are chosen independently, the probability that g is not
`-independent is upper bounded by

b `2 c∑
j=1

(
2m

2j

)(
(2j)j

2(s+1)j

)d
≤
b `2 c∑
j=1

(
2m

2j

)(
(2j)!
2jj!

(
1
2s

)j)d

≤
b `2 c∑
j=1

(
e2m

2j

)2j (
j

2s

)dj

≤
b `2 c∑
j=1

(
jd−2

2ds−2m−1

)j
.
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Let pj =
(

jd−2

2ds−2m−1

)j
for j = 1, . . . , b `2c. One can easily show that pj+1 ≤ pj/2 if

2ds−2m−2 ≥
(
e`

2

)d−2
. (2)

In this case, we have

Pm,s,d,` =
b `2 c∑
j=1

pj ≤
b `2 c∑
j=1

p1

2j−1 ≤
1

2ds−2m−2 . (3)

5 White-Box Security of FPL

Throughout this section, we will fix the parameters of FPL, namely, m, s, d, κ,
r, where we assume r ≥ 7. Furthermore, we suppose that an r-round FPL block
cipher is based on a probe function

g : {0, 1}m → ({0, 1}s)d

and a keyed table

F : {0, 1}κ × ({1, . . . , r} × {1, . . . , d} × {0, 1}s)→ {0, 1}m,

writing Fi,j = F (·, i, j, ·) for i ∈ {1, . . . , r} and j ∈ {1, . . . , d}.

5.1 Key Extraction Hardness of FPL

Up to the pseudorandomness of the keyed table, one would not be able to recover
the secret key by exploiting the table entries. More precisely, it is easy to see

Advcsa-keh
FPL,F (q, τ) = Advprf

F (q′, τ ′),

where q′ = q +O(κ/n) and τ ′ = τ +O(κ/n). So in the following, we will focus
on the space hardness of FPL.

5.2 Space Hardness of FPL

Throughout this section, we will replace the underlying keyed tables Fi,j , (i, j) ∈
{1, . . . , r} × {1, . . . , d}, by independent uniform random functions fi,j up to the
pseudorandomness of F , so all the security bounds have an additional term
Advprf

F (q, τ). In this setting, we will consider an information theoretic adversary
A with unbounded computational power.
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A Useful Lemma. Note that for x ∈ {0, 1}m,

Hi(x) = Fi,1(y1)⊕ Fi,2(y2)⊕ · · · ⊕ Fi,d(yd)

where g(x) = (y1, y2, . . . , yd) ∈ ({0, 1}s)d. For i and j such that 1 ≤ i ≤ j ≤ r,
let

FPLi,j = Φ[Hj ] ◦ · · · ◦ Φ[Hi+1] ◦ Φ[Hi]
be the subcipher of FPL containing rounds i to j, and for w ∈ {0, 1}m, let

FPLwi,j : {0, 1}m → {0, 1}m,

be a function such that FPLwi,j(u) = v if FPLi,j(w, u) = (v′, v) for some v′ ∈
{0, 1}m. In other words, FPLwi,j sets the left half of the input to FPLi,j to w, and
takes only the right half of the output from FPLi,j .

In order to prove the strong space hardness of FPL, we need to prove the
multi-collision security of FPLwi,j over the random choice of the underlying tables.

Lemma 3. Let 1 ≤ i ≤ j ≤ r, let ` ≥ 2, and let w ∈ {0, 1}m. If a probe
function g is `-independent, then the probability that there are ` distinct elements
u1, . . . , u` ∈ {0, 1}m such that FPLwi,j(u1) = · · · = FPLwi,j(u`) is upper bounded by

2m
(e
`

)`
.

Proof. We will first fix v ∈ {0, 1}m and ` distinct elements u1, . . . , u` ∈ {0, 1}m,
and then upper bound the probability that

FPLwi,j(uα) = v (4)

for every α = 1, . . . , `. Let (w′α, u′α) = FPLi,j−1(w, uα) (with arbitrary tables for
rounds i to j − 1) and let

g(u′α) = (yα,1, yα,2, . . . , yα,d)

for α = 1, . . . , `. Then (4) implies the following ` equations:

Hj(u′α) = Fj,1(yα,1)⊕ Fj,2(yα,2)⊕ · · · ⊕ Fj,d(yα,d) = w′α ⊕ v (5)

for α = 1, . . . , `. If u′α1
= u′α2

for some 1 ≤ α1 < α2 ≤ `, then it should be the
case that w′α1

⊕ v 6= w′α2
⊕ v since (w′α, u′α) are all distinct. Therefore we can

assume that u′α are all distinct.
Rewriting Fj,β(yα,β) by zβ,yα,β for 1 ≤ α ≤ ` and 1 ≤ β ≤ d, we obtain

a system of equations in unknowns zβ,yα,β . If the number of the unknowns is
denoted by L, then the number of solutions to this system is given as 2(L−`)m since
g is `-independent. Furthermore, for each solution, say (z∗β,yα,β ), the probability
that Fj,β(yα,β) = z∗β,yα,β is given as 1/2Lm. Therefore, the probability of an
`-multicollision in FPLwi,j is upper bounded by

2m
(

2m

`

)
2(L−`)m

2Lm = 2m
(

2m

`

)
1

2`m ≤ 2m
(e
`

)`
. ut
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Security Against Known-space Attacks. Weak and strong space hardness
of FPL against known-space attacks is summarized by the following theorem.

Theorem 1. Suppose that g is `-independent for a positive integer `. Then for
any integers q, r1 and r2 such that 0 ≤ q ≤ rd2s, r1, r2 ≥ 3 and r1 + r2 < r, we
have

Advksa-wsh
FPL,F (q, τ) ≤ Advprf

F (q, τ) + 2mqr1d

(rd2s)r1d
+ 22mqr2d

(rd2s)r2d
+ 2m

(e
`

)`
+ `

22m .

(6)

We also have

Advksa-ssh
FPL,F (q, τ) ≤ Advprf

F (q, τ) + 22m+1
( q

rd2s
)(d r2e−1)d

+ 2m
(e
`

)`
+ `

22m .

(7)

Proof. We will give the proof of (6); The upper bound (7) is proved similarly.
In the first phase of the attack, A is given q queries fiα,jα(yα), α = 1, . . . , q,

where iα ∈ {1, . . . , r}, jα ∈ {1, . . . , d} and yα ∈ {0, 1}s are chosen independently
at random. In the second phase of the attack, A is given a random plaintext
u ∈ {0, 1}n, where u is written as uL‖uR for uL, uR ∈ {0, 1}m.

For i ∈ {1, . . . , r} and j ∈ {1, . . . , d}, let Yi,j ⊂ {0, 1}s be a set of queries
y such that fi,j(y) have been fixed (so i = iα, j = jα and y = yα for some
α ∈ {1, . . . , q}). If there are r1 + 1 elements, denoted x0, x1, . . . , xr1 ∈ {0, 1}m,
such that

1. x0 = uL and x1 = uR,
2. g(xi)

def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = 1, . . . , r1,
3. xi−1 ⊕ xi+1 = fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d) for i = 1, . . . , r1 − 1,

then we will give a win to A. For each (r1 +1)-tuple (x0, . . . , xr1) ∈ ({0, 1}m)r1+1,
the probability that x0 = uL, x1 = uR, and g(xi) ∈ Yi,1×· · ·×Yi,d for i = 1, . . . , r1
is upper bounded by

1
22m

( q

rd2s
)r1d

.

Furthermore, the probability that xi−1 ⊕ xi+1 = fi,1(yi,1) ⊕ · · · ⊕ fi,1(yi,d) for
i = 2, . . . , r1 − 1 is upper bounded by(

1
2m

)r1−2

over the randomness of the underlying tables. Overall, the probability that A
wins is upper bounded by

2mqr1d

(rd2s)r1d
. (8)

On the other hand, if there are r2 elements x1, . . . , xr2 ∈ {0, 1}m, such that

12



1. g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = r − r2 + 1, . . . , r,

2. xi−1 ⊕ xi+1 = fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d) for i = r − r2 + 2, . . . , r − 1,
then we will also give a win to A. The probability of A’s winning in this game is
upper bounded by

22mqr2d

(rd2s)r2d
. (9)

Suppose that A outputs v ∈ {0, 1}2m at the end of the attack, where we will
write v = vL‖vR for vL, vR ∈ {0, 1}m. Without the winning events above, one
can find a sequence of r′ + 1 elements, say x0, x1, . . . , xr′ ∈ {0, 1}m, for some r1
such that 1 ≤ r′ ≤ r1, where
1. x0 = uL and x1 = uR,
2. for i = 1, . . . , r′ − 1,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d),
3. g(xr′) /∈ Yr′,1 × · · · × Yr′,d.
Similarly, there is a sequence of r′′+1 elements, say xr−r′′+1, xr−r′′+2, . . . , xr+1 ∈
{0, 1}m, for some r′′ such that 1 ≤ r′′ ≤ r2, where
1. xr = vL and xr+1 = vR,
2. for i = r − r′′ + 2, . . . , r,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d),
3. g(xr−r′′+1) /∈ Yr−r′′+1,1 × · · · × Yr−r′′+1,d.
Next, we focus on r − r′ − r′′ (≥ 1) rounds in the middle from round r′ + 1
to r − r′′. By Lemma 3, the number of inputs that collides on xr−r′′+1 under
FPLxr′r′+1,r−r′′ is at most ` except with probability

2m
(e
`

)`
. (10)

Without any `-multicollision, we would have two sets of `′ different values, say
{x1

r′+1, . . . , x
`′

r′+1} and {x1
r−r′′ , . . . , x

`′

r−r′′}, for some `′ ≤ `, such that

Φ[Hr−r′′ ] ◦ · · · ◦ Φ[Hr′+2] ◦ Φ[Hr′+1](xr′ , xjr′+1) = (xjr−r′′ , xr−r′′+1)

for j = 1, . . . , `′. Therefore, FPL(u) = v implies that

Φ[Hr′ ](xr′−1, xt) = (xr′ , xjr′+1),
Φ[Hr−r′′+1](xjr−r′′ , xr−r′′+1) = (xr−r′′+1, xr−r′′+2)

for some j = 1, . . . , `′, which hold with probability at most
`

22m . (11)

The proof of (6) is complete by (8), (9), (10) and (11). ut
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Security Against Non-adaptive Chosen-space Attacks. Weak and strong
space hardness of FPL against non-adaptive chosen-space attacks is summarized
by the following theorem.

Theorem 2. Let ` be a positive integer and let p(·) be an increasing function
defined on {0, . . . , d2s}. Suppose that g : {0, 1}m → ({0, 1}s)d is `-independent
and (p(q′), q′)-superposing for every q′ ∈ {0, . . . , d2s}. For any q ∈ {0, . . . , rd2s}
and r′ ∈ {1, . . . , r}, let p∗(q, r′) be the maximum of

∏r′

i=1 p(qi) subject to the
constraints

∑r′

i=1 qi = q and 0 ≤ qi ≤ d2s for i = 1, . . . , r′. Then for any r1 and
r2 such that r1, r2 ≥ 3 and r1 + r2 < r, we have

Advncsa-wsh
FPL,F (q, τ) ≤ Advprf

F (q, τ) + p∗(q, r1)
2mr1

+ p∗(q, r2)
2m(r2−2) + 2m

(e
`

)`
+ `

22m .

(12)

We also have

Advncsa-ssh
FPL,F (q, τ) ≤ Advprf

F (q, τ) +
p∗
(
q,
⌈
r
2
⌉
− 1
)

2(d r2e−3)m−1
+ 2m

(e
`

)`
+ `

22m . (13)

Proof. We will give the proof of (12); The upper bound (13) is proved similarly.
At the first phase of the attack, A chooses sets of queries Yi,j ⊂ {0, 1}s and

obtains fi,j(y) for each y ∈ Yi,j , where i ∈ {1, . . . , r} and j ∈ {1, . . . , d}. At the
second phase of the attack, A is given a random plaintext u ∈ {0, 1}n, where u
is written as uL‖uR for uL, uR ∈ {0, 1}m.

If there are r1 + 1 elements, denoted x0, x1, . . . , xr1 ∈ {0, 1}m, such that

1. x0 = uL and x1 = uR,
2. g(xi)

def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = 1, . . . , r1,
3. xi−1 ⊕ xi+1 = fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d) for i = 1, . . . , r1 − 1,

then we will give a win to A. Since |Yi,1|+ · · ·+ |Yi,d| = qi and g is (p(qi), qi)-
superposing, we have

|{x ∈ {0, 1}m : g(x) ∈ Yi,1 × · · · × Yi,d}| < p(qi)

for i = 1, . . . , r1. Therefore the number of tuples (x0, x1, . . . , xr1) such that
g(xi) ∈ Yi,1 × · · · × Yi,d for i = 1, . . . , r1 is upper bounded by

2m
r1∏
i=1

p(qi) ≤ 2mp∗(q, r1),

since q1 + · · ·+ qr1 ≤ q; for each (r1 + 1)-tuple (x0, . . . , xr1), the probability that
uL = x0, uR = x1 and xi−1⊕xi+1 = fi,1(yi,1)⊕· · ·⊕fi,1(yi,d) for i = 1, . . . , r1−1
is upper bounded by (

1
2m

)r1+1
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over the randomness of the underlying tables. Overall, the probability that A
wins is upper bounded by

p∗(q, r1)
2mr1

. (14)

Similarly, if there are r2 elements x1, . . . , xr2 ∈ {0, 1}m, such that

1. g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d for i = r − r2 + 1, . . . , r,

2. xi−1 ⊕ xi+1 = fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d) for i = r − r2 + 2, . . . , r − 1,

then we will also give a win to A. The probability of A’s winning in this game is
also upper bounded by

p∗(q, r2)
2m(r2−2) . (15)

Suppose that A outputs v ∈ {0, 1}2m at the end of the attack, where we will
write v = vL‖vR for vL, vR ∈ {0, 1}m. Without the winning events above, one
can find a sequence of r′ + 1 elements, say x0, x1, . . . , xr′ ∈ {0, 1}m, for some r′
such that 1 ≤ r′ ≤ r1, where

1. x0 = uL and x1 = uR,
2. for i = 1, . . . , r′ − 1,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d),

3. g(xr′) /∈ Yr′,1 × · · · × Yr′,d.

Similarly, there is a sequence of r′′+1 elements, say xr−r′′+1, xr−r′′+2, . . . , xr+1 ∈
{0, 1}m, for some r′′ such that 1 ≤ r′′ ≤ r2, where

1. xr = vL and xr+1 = vR,
2. for i = r − r′′ + 2, . . . , r,

g(xi)
def= (yi,1, . . . , yi,d) ∈ Yi,1 × · · · × Yi,d,

xi+1 = xi−1 ⊕ fi,1(yi,1)⊕ · · · ⊕ fi,1(yi,d),

3. g(xr−r′′+1) /∈ Yr−r′′+1,1 × · · · × Yr−r′′+1,d.

Next, we focus on r − r′ − r′′ (≥ 1) rounds in the middle from round r′ + 1
to r − r′′. By Lemma 3, the number of inputs that collides on xr−r′′+1 under
FPLxr′r′+1,r−r′′ is at most ` except with probability

2m
(e
`

)`
. (16)

Without any `-multicollision, we would have two sets of `′ different values, say
{x1

r′+1, . . . , x
`′

r′+1} and {x1
r−r′′ , . . . , x

`′

r−r′′}, for some `′ ≤ `, such that

Φ[Hr−r′′ ] ◦ · · · ◦ Φ[Hr′+2] ◦ Φ[Hr′+1](xr′ , xjr′+1) = (xjr−r′′ , xr−r′′+1)

15



for j = 1, . . . , `′. Therefore, FPL(u) = v implies that

Φ[Hr′ ](xr′−1, xt) = (xr′ , xjr′+1),
Φ[Hr−r′′+1](xjr−r′′ , xr−r′′+1) = (xr−r′′+1, xr−r′′+2)

for some j = 1, . . . , `′, which hold with probability at most

`

22m . (17)

The proof of (12) is complete by (14), (15), (16) and (17). ut

Security Against Adaptive Chosen-space Attacks. We claim weak space
hardness of FPL against adaptive chosen-space attacks with a somewhat heuristic
argument.

We first estimate how large space is necessary to compute L plaintexts in
advance. When L plaintexts are encrypted, each table has L accesses, and for L
table accesses, the expected number of used entries in each table Fi,j is estimated
as
(
1− eLin

)
· 2s, where ein

def= 1 − 1/2s. Therefore an adaptive chosen-space
attack of table leakage δ (= q/rd2s) enables to compute

⌈
logein (1− δ)

⌉
pairs of

plaintexts and the corresponding ciphertexts. A randomly-drawn plaintext will
be included in the set of the prepared pairs with probability

⌈
logein (1− δ)

⌉
/2n.

On the other hand, if the plaintext is not in the set of the prepared pairs, then
the adversary is able to successfully guess its ciphertext with probability at most
δdr. Overall, the adversarial success probability is upper bounded by⌈

logein (1− δ)
⌉

2n + δdr.

For example, when the parameters are given as (n, s, d, r) = (128, 12, 40, 11) (as
used in Table 3) and when δ = 0.25, the success probability is limited to 2−117.

5.3 Numerical Interpretation

Table 1 compares the security of FPL for various sets of parameters when n = 128
and n = 64. In this table, FPL-(n, s, d, r) denotes the n-bit FPL cipher of r rounds
using d table look-ups for each round, where each table has 2s entries. We will
assume that the probe function g is pseudorandom so that we can probabilistically
guarantee its superposedness and linear independence using Lemmas 1 and 2,
and this probability is represented by the security parameter λ. Since all the
security bounds in Section 5 include the term 2n2

(
e
`

)` + `
2n , which is optimized

when ` is close to n, we will set the target security level to (n− logn) bits, and
compare the maximum table leakage δ (= q/rd2s) that achieves this level of
security.

For each set of parameters (n, s, d, r), the maximum table leakage is computed
as follows.
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1. Fix sufficiently large λ, and by Lemma 1, assume that the probe function g is
(Aqd +B, q)-superposing for every q such that 0 ≤ q ≤ d2s, where A = 3·2m

(d2s)d
and B = d2s + λ.

2. Find ` that minimizes 2n2
(
e
`

)` + `
2n over positive integers ` such that Pm,s,d,`

is sufficiently small, say ≤ 2−λ for the fixed parameter λ.
3. In order to analyze the ncsa-wsh security, for each (r1, r2) such that r1, r2 ≥ 3

and r1 + r2 < r, maximize q ∈ {0, . . . , rd2s} such that

p∗(q, r1)
2mr1

+ p∗(q, r2)
2m(r2−2) + 2m

(e
`

)`
+ `

22m (18)

is upper bounded by n/2n, where p∗(·, ·) is as defined in Theorem 2. Let
q∗r1,r2

denote this maximum.
4. Maximize q∗r1,r2

over (r1, r2) such that r1, r2 ≥ 3 and r1 + r2 < r. Let q∗∗
denote this maximum. Then q∗∗/rd2s becomes the maximum table leakage
that achieves (n− logn)-bit security.

5. The ksa-wsh, ksa-ssh, ncsa-ssh security is analyzed similarly.
In the third step, we need to compute p∗(q, r1) and p∗(q, r2) for each q and
(r1, r2), and see if (18) is upper bounded by n/2n. For a fixed pair (q, r), p∗(q, r)
is the maximum of

r∏
i=1

(
Aqdi +B

)
subject to the constraints

∑r
i=1 qi = q and 0 ≤ qi ≤ d2s for i = 1, . . . , r. We

observe that

ln
(

r∏
i=1

(
Aqdi +B

))
=

r∑
i=1

ln
(
Aqdi +B

)
, (19)

where
C(x) def= ln

(
Axd +B

)
is concave in [(B/A) 1

d , rd2s].6 For simplicity of analysis, we upper bound C(x)
by C(x), where

C(x) def=
{
C((B/A) 1

d ) if x ≤ (B/A) 1
d ,

C(x) if x ≥ (B/A) 1
d .

Once we fix the number of indices i, denoted r′, such that qi ≥ (B/A) 1
d , then∑r

i=1 lnC(x) is upper bounded by

(r − r′)C((B/A) 1
d ) + r′C(q/r′)

by Jensen’s inequality.7 So we conclude that

ln p∗(q, r) ≤ max
0≤r′≤r

{
(r − r′)C((B/A) 1

d ) + r′C(q/r′)
}
.

6 We assume that 0 < (B/A) 1
d < rd2s. All the parameters in Table 1 satisfy this

inequality.
7 We let r′C(q/r′) = 0 when r′ = 0.
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For example, let n = 128 (i.e., m = 64) and let (s, d, r) = (12, 20, 17). As a
function of `,

2n2
(e
`

)`
+ `

2n

is minimized when ` = 47. We also see that P64,12,20,47 ≤ 1/2111, so we let
λ = 111. This means that when we use AES with a fixed key as a probe function
it would satisfy `-linear independence except with probability 1/2111. When
q = 0.17 · (rd2s), we have

Advncsa-wsh
FPL,(Fi,j)(q, τ) ≤ 2−122.2

assuming that the underlying tables are truly random.

Table 1: Security of FPL

(a) Security of FPL with n = 128.

Cipher Table size λ
ksa ncsa

wsh ssh wsh ssh
FPL-(128, 12, 20, 17) 10.63 MB 111 0.38 0.33 0.17 0.12
FPL-(128, 12, 20, 33) 20.62 MB 111 0.61 0.58 0.28 0.26
FPL-(128, 16, 16, 17) 136.00 MB 127 0.30 0.25 0.13 0.09
FPL-(128, 16, 16, 33) 264.00 MB 127 0.54 0.50 0.24 0.22
FPL-(128, 20, 12, 17) 1.59 GB 111 0.20 0.16 0.09 0.05
FPL-(128, 20, 12, 33) 3.09 GB 111 0.44 0.40 0.22 0.22

(b) Security of FPL with n = 64.

Cipher Table size λ
ksa ncsa

wsh ssh wsh ssh
FPL-(64, 8, 16, 9) 144.00 KB 63 0.26 0.26 0.00 0.00
FPL-(64, 8, 16, 17) 272.00 KB 63 0.55 0.51 0.13 0.08
FPL-(64, 8, 16, 33) 528.00 KB 63 0.74 0.71 0.30 0.26
FPL-(64, 16, 8, 17) 34.00 MB 63 0.30 0.26 0.00 0.00
FPL-(64, 16, 8, 33) 66.00 MB 63 0.55 0.51 0.20 0.14
FPL-(64, 16, 16, 17) 68.00 MB 63 0.55 0.51 0.00 0.00

6 FPLAES: Concrete Instantiation

Given probabilistic construction of a secure probe function, one might want to
use AES (with a fixed key) as the probe function, assuming AES is pseudorandom.
In this section, we propose a concrete instantiation of FPL, dubbed FPLAES, using
(round-reduced) AES for the underlying table and probe functions.
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6.1 Specification

The FPLAES cipher is defined by parameters r, m, d, s, where m is even and
s ≤ 16.8 Let n = 2m, and let FPLAES-(n, s, d, r) denote the n-bit FPLAES cipher
of r rounds using d table look-ups for each round, where each table has 2s entries.
The probe function uses AES reduced to 5 rounds (without the linear mixing
operation in the last round), denoted AES[5], while the table is generated using
the full-round AES using 128-bit keys. In the following, Tra(·) denotes truncation
of the first a bits from the input, and 〈x〉a denotes the a-bit binary representation
of integer x.
Probe Functions. The probe function g : {0, 1}m → ({0, 1}s)d is computed as
follows.

1. On input x ∈ {0, 1}m, compute

y = AES[5]0128(〈1〉128−m‖x)‖ · · · ‖AES[5]0128(〈dd/8e〉128−m‖x),

where 0128 denotes the zero vector of 128 bits,9 and the input prefixes are
represented by 128−m bits.

2. Break down y as y′1‖ · · · ‖y′d‖∗, where y′j ∈ {0, 1}16 for j = 1, . . . , d and ∗
denotes the remaining bits; the index yj for the j-th table is defined as
Tr16−s(y′j) for j = 1, . . . , d. So we have g(x) = (y1, . . . , yd).

Tables. The FPLAES cipher uses a single keyed table

F : {0, 1}128 × {1, . . . , r} × {1, . . . , d} × {0, 1}s −→ {0, 1}m,

where F (k, i, j, y) = Tr128−m (AESk(〈i〉64‖〈j〉64−s‖y)).

6.2 Black-Box Security of FPLAES

In this section, we analyze the differential and the linear properties of FPLAES.
Differential Cryptanalysis. Fix an s-to-m bit function f : {0, 1}s → {0, 1}m.
Given an input difference α and an output difference β, the differential probability
of f is defined as

DP(α, β) = |{(u, v)|u⊕ v = α and f(u)⊕ f(v) = β}|

for u, v ∈ {0, 1}s. The distribution of DP(α, β) over all s-to-m bit functions has
been shown to be binomial for sufficiently large s and m [5, 10]. For a non-trivial
differential (α, β) with fixed α and β, this distribution is binomial with the
following probability;

Pr [DP(α, β) = λ] = (2−m)λ · (1− 2−m)2s−1−λ ·
(

2s−1

λ

)
.

8 The definition can be straightforwardly extended to s > 16.
9 Any constant key will not affect the overall security (compared to 0128).
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In [6], the probability pB that DP(α, β) is at most B over all non-trivial values
of α and β is lower bounded by(

1− (2s−1 · 2−m)B+1

(B + 1)!

)2s+m+1

.

Table 2a shows pB for f with s = 12, 16, 20 when n = 128 (so m = 64). By using
this probability pB , the differential probability of f is estimated as B/2s. Suppose
that the differential probability of f to be 2−10.4 (= 3/212), 2−14 (= 4/216) and
2−18 (= 4/220), since p3, p4 and p5 are very close to 1 in f with s = 12, 16 and
20, respectively. Due to diffusion properties of the probe function, FPLAES with
s = 12, 16 and 20 have at least 13, 10 and 8 active Fi,j functions after 3 rounds.

When n = 64, the lower bounds on pB are listed in Table 2b. The differential
probability of f with s = 8 and 16 is 2−6.4 (= 3/28) and 2−13.4 (= 6/216),
respectively. FPLAES with s = 8 and 16 have at least 10 and 5 active Fi,j
functions after 3 rounds.

Table 2: Lower bounds on pB

(a) Lower bounds on pB with n = 128.

s p1 p2 p3 p4 p5 p6

12 1-2−30 1-2−85 1-2−140 1-2−195 1-2−250 1-2−306

16 1-2−18 1-2−69 1-2−120 1-2−171 1-2−222 1-2−274

20 1-2−6 1-2−53 1-2−100 1-2−147 1-2−194 1-2−242

(b) Lower bounds on pB with n = 64.

s p1 p2 p3 p4 p5 p6

8 1-2−10 1-2−37 1-2−64 1-2−91 1-2−118 1-2−146

16 - 1-2−5 1-2−24 1-2−43 1-2−62 1-2−82

Linear Cryptanalysis. Fix an s-to-m bit function f : {0, 1}s → {0, 1}m. Given
an input mask γ ∈ {0, 1}s and an output mask δ ∈ {0, 1}m, the correlation of a
linear approximation with respect to (γ, δ) is defined as

Cor = 2s·(|{x ∈ {0, 1}s|γ · x⊕ δ · f(x) = 0}|−|{x ∈ {0, 1}s|γ · x⊕ δ · f(x) = 1}|).

The linear probability LP for (γ, δ) is defined as Cor2. If LP of f is assumed to
be normally distributed, then LP of a non-trivial linear approximation of f has
mean µ(LP) = 2−s and variance σ2(LP) = 2× 2−2s [10].

In [6], LP of f with a fixed key is upper bounded by 2−s+10σ with probability
at least 1− 2−148. Therefore, the maximum linear probabilities can be assumed
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to be 2−4, 2−8, 2−12 and 2−16 for s = 8, 12, 16 and 20, respectively. So FPLAES
with s = 12, 16, 20 and n = 128 have at least 16, 11 and 8 active Fi,j functions
after 3 rounds. When n = 64, FPLAES with s = 8 and 16 have at least 16 and 6
active Fi,j functions after 4 and 3 rounds, respectively.

6.3 Performance

In this section, all of our experiments are done in the Zen+ microarchitecture
(AMD Ryzen 7 2700X @ 3.70GHz) which supports AVX (including AVX2), SSE,
and AES instructions. The machine has L1-data, L2, and L3 caches with 32KB,
512KB, and 8192KB sizes as well as 64GB DDR4 RAM with a clock frequency of
2400MHz. The source codes have been compiled by the GNU C Compiler 7.4.0
in O2 optimization level.

Figure 2 compares the performance of FPLAES in the white-box setting for a
various number of rounds r. When s and d are fixed, the table size is proportional
to the number of rounds, and so is the execution time (in cycles per byte).
We also observe that FPLAES-(128, 12, 40, r) is significantly faster than FPLAES-
(128, 12, 20, 2r) (e.g., when r = 10, 15), where FPLAES-(128, 12, 20, 2r) and FPLAES-
(128, 12, 40, r) use tables of the same size with the same number of table look-ups.
The reason is that FPLAES-(128, 12, 40, r) makes more tables looks-ups per round
than FPLAES-(128, 12, 20, 2r), which can be pipelined minimizing latency.

r
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208.50
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884.14

1108.86

10 15 20 25 30

(a) FPLAES-(128, 12, 20, r).

r

cycles/byte

316.88

568.26

864.93

1175.12

1482.87

10 15 20 25 30

(b) FPLAES-(128, 12, 40, r).

r

cycles/byte

415.52

643.98

869.62

1126.72

1368.20

10 15 20 25 30

(c) FPLAES-(128, 16, 16, r).

Fig. 2: Performance of FPLAES-(n, s, d, r) for a various number of rounds r.

Table 3 compares the performance of FPLAES to SPACE, WhiteBlock and
WEM with block size n = 128. The comparison has been made with table sizes
around 13 MB.10 The table size is not exactly the same as some constructions
10 This is the table size of WEM for their recommended parameters.
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recommend only a small number of sets of parameters with their security analysis,
while the table size affects both efficiency and security. That said, we observe
that FPLAES-(128, 12, 40, 11) provides the strongest security without significant
loss of efficiency; it provides ksa-wsh and ksa-ssh security up to the leakage of
44% and 41%, respectively. Note that SPACE uses a single table for every round,
so its provable security is also heuristic.

Table 3: Comparison of FPLAES to existing schemes with block size n = 128.
The security is compared in terms of weak space hardness against known-space
attacks.

Cipher Table size Security Table look-ups Cycles per byte

SPACE-(20, 64) 13.50 MB 128 bits @ 0.25 64 RAM-TL 891.60
WhiteBlock-20 24.00 MB 108 bits @ 0.25 69 RAM-TL 582.62
WEM-(16, 12) 13.00 MB 112 bits @ 0.25 104 RAM-TL 356.49

FPLAES-(12, 40, 11) 13.75 MB 121 bits @ 0.44 440 RAM-TL 357.52

Black Box Implementation. A key owner might want to use a compact imple-
mentation of the encryption scheme by storing keys instead of the corresponding
tables. For example, in an environment where a single server communicates
with all the users, it would be infeasible to store all the keyed tables. Table 4
compares performance of FPLAES to existing schemes in the black-box setting,
where the underlying tables are all generated using the full AES block cipher.
This comparison does not include WEM, since the bijective S-boxes of the WEM
are generated by the Fisher-Yates shuffle, which is too slow when implemented
with AES. We see that FPLAES is comparable to existing schemes in the black
box implementation.

Table 4: Black-box performance of FPLAES and existing schemes in cycles/byte.
SPACE-(20, 64) WhiteBlock-20 WEM-(16, 12) FPLAES-(12, 40, 11)

166.40 93.30 − 200.35
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