132 research outputs found

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψ′→π+π−J/ψ(J/ψ→γppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ′\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861−13+6(stat)−26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    NMDA Mediated Contextual Conditioning Changes miRNA Expression

    Get PDF
    We measured the expression of 187 miRNAs using quantitative real time PCR in the hippocampal CA1 region of contextually conditioned mice and cultured embryonic rat hippocampal neurons after neuronal stimulation with either NMDA or bicuculline. Many of the changes in miRNA expression after these three types of stimulation were similar. Surprisingly, the expression level of half of the 187 measured miRNAs was changed in response to contextual conditioning in an NMDA receptor-dependent manner. Genes that control miRNA biogenesis and components of the RISC also exhibited activity induced expression changes and are likely to contribute to the widespread changes in the miRNA profile. The widespread changes in miRNA expression are consistent with the finding that genes up-regulated by contextual conditioning have longer 3′ UTRs and more predicted binding sites for miRNAs. Among the miRNAs that changed their expression after contextual conditioning, several inhibit inhibitors of the mTOR pathway. These findings point to a role for miRNAs in learning and memory that includes mTOR-dependent modulation of protein synthesis

    Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disorder that can be triggered through genetic or sporadic mechanisms. MicroRNAs (miRNAs) have become a major therapeutic focus as their pervasive expression and powerful regulatory roles in disease pathogenesis become increasingly apparent. Here we examine the role of miRNAs in FTLD patients with TAR DNA-binding protein 43 pathology (FTLD-TDP) caused by genetic mutations in the progranulin (<it>PGRN</it>) gene.</p> <p>Results</p> <p>Using miRNA array profiling, we identified the 20 miRNAs that showed greatest evidence (unadjusted P < 0.05) of dysregulation in frontal cortex of eight FTLD-TDP patients carrying <it>PGRN </it>mutations when compared to 32 FTLD-TDP patients with no apparent genetic abnormalities. Quantitative real-time PCR (qRT-PCR) analyses provided technical validation of the differential expression for 9 of the 20 miRNAs in frontal cortex. Additional qRT-PCR analyses showed that 5 out of 9 miRNAs (miR-922, miR-516a-3p, miR-571, miR-548b-5p, and miR-548c-5p) were also significantly dysregulated (unadjusted P < 0.05) in cerebellar tissue samples of <it>PGRN </it>mutation carriers, consistent with a systemic reduction in PGRN levels. We developed a list of gene targets for the 5 candidate miRNAs and found 18 genes dysregulated in a reported FTLD mRNA study to exhibit anti-correlated miRNA-mRNA patterns in affected cortex and cerebellar tissue. Among the targets is brain-specific angiogenesis inhibitor 3, which was recently identified as an important player in synapse biology.</p> <p>Conclusions</p> <p>Our study suggests that miRNAs may contribute to the pathogenesis of FTLD-TDP caused by <it>PGRN </it>mutations and provides new insight into potential future therapeutic options.</p

    First observation of the decays χcJ→π0π0π0π0

    Get PDF
    We present a study of the P-wave spin-triplet charmonium χ cJ decays (J=0, 1, 2) into π0π0π0π0. The analysis is based on 106×106 ψ⊃′ decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the π0π0π0π0 hadronic final state is observed for the first time. We measure the branching fractions B(χ c0→π0π0π0π0)=(3.34±0. 06±0.44)×10⊃-3, B(χ c1→π0π0π0π0) =(0.57±0.03±0.08)×10⊃-3, and B(χ c2→π0π0π0π0)=(1.21±0.05±0.16) ×10⊃-3, where the uncertainties are statistical and systematical, respectively. © 2011 American Physical Society.published_or_final_versio

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio

    Higher-order multipole amplitude measurement in ψ ′→γχ c2

    Get PDF
    Using 106×106 ψ ′ events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ ′→γχ c2→γπ +π -/γK +K - are measured. A fit to the χ c2 production and decay angular distributions yields M2=0.046±0. 010±0.013 and E3=0.015±0.008±0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4σ statistical significance and is consistent with the charm quark having no anomalous magnetic moment. © 2011 American Physical Society.published_or_final_versio

    Study of a00(980)-f0(980) mixing

    Get PDF
    Using samples of 2.25×108 J/ψ events and 1.06×108 ψ ′ events collected with the BES III detector, we study the f 0(980)→a00(980) and a00(980)→f 0(980) transitions in the processes J/ψ→φf 0(980) →φa00(980) and χ c1→π0a00(980)→π0f 0(980), respectively. Evidence for f 0(980)→a00(980) is found with a significance of 3.4σ, while in the case of a00(980)→f 0(980) transition, the significance is 1.9σ. Measurements and upper limits of both branching ratios and mixing intensities are determined. © 2011 American Physical Society.published_or_final_versio

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin

    Two-photon widths of the χ c0,2 states and helicity analysis for χ c2→γγ

    Get PDF
    Based on a data sample of 106×106 ψ ′ events collected with the BESIII detector, the decays ψ ′→γχ c0,2, χ c0,2→γγ are studied to determine the two-photon widths of the χ c0,2 states. The two-photon decay branching fractions are determined to be B(χ c0→γγ)=(2. 24±0.19±0.12±0.08)×10 -4 and B(χ c2→γγ)=(3.21±0.18±0. 17±0.13)×10 -4. From these, the two-photon widths are determined to be Γ γγ(χ c0)=(2. 33±0.20±0.13±0.17)keV, Γ γγ(χ c2)=(0.63±0.04±0. 04±0.04)keV, and R=Γ γγ(χ c2)/ Γ γγ(χ c0)=0.271±0. 029±0.013±0.027, where the uncertainties are statistical, systematic, and those from the PDG B(ψ ′→γχ c0,2) and Γ(χ c0,2) errors, respectively. The ratio of the two-photon widths for helicity λ=0 and helicity λ=2 components in the decay χ c2→γγ is measured for the first time to be f 0/2=Γγγλ= 0(χ c2)/Γγγλ=2(χ c2)=0. 00±0.02±0.02. © 2012 American Physical Society.published_or_final_versio
    • …
    corecore