318 research outputs found

    Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop

    Get PDF
    This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously

    International Veterinary Epilepsy Task Force Consensus Proposal: Diagnostic approach to epilepsy in dogs

    Get PDF
    This article outlines the consensus proposal on diagnosis of epilepsy in dogs by the International Veterinary Epilepsy Task Force. The aim of this consensus proposal is to improve consistency in the diagnosis of epilepsy in the clinical and research settings. The diagnostic approach to the patient presenting with a history of suspected epileptic seizures incorporates two fundamental steps: to establish if the events the animal is demonstrating truly represent epileptic seizures and if so, to identify their underlying cause. Differentiation of epileptic seizures from other non-epileptic episodic paroxysmal events can be challenging. Criteria that can be used to make this differentiation are presented in detail and discussed. Criteria for the diagnosis of idiopathic epilepsy (IE) are described in a three-tier system. Tier I confidence level for the diagnosis of IE is based on a history of two or more unprovoked epileptic seizures occurring at least 24 h apart, age at epileptic seizure onset of between six months and six years, unremarkable inter-ictal physical and neurological examination, and no significant abnormalities on minimum data base blood tests and urinalysis. Tier II confidence level for the diagnosis of IE is based on the factors listed in tier I and unremarkable fasting and post-prandial bile acids, magnetic resonance imaging (MRI) of the brain (based on an epilepsy-specific brain MRI protocol) and cerebrospinal fluid (CSF) analysis. Tier III confidence level for the diagnosis of IE is based on the factors listed in tier I and II and identification of electroencephalographic abnormalities characteristic for seizure disorders. The authors recommend performing MRI of the brain and routine CSF analysis, after exclusion of reactive seizures, in dogs with age at epileptic seizure onset 6 years, inter-ictal neurological abnormalities consistent with intracranial neurolocalisation, status epilepticus or cluster seizure at epileptic seizure onset, or a previous presumptive diagnosis of IE and drug-resistance with a single antiepileptic drug titrated to the highest tolerable dose

    Predicting Pneumonia and Influenza Mortality from Morbidity Data

    Get PDF
    BACKGROUND: Few European countries conduct reactive surveillance of influenza mortality, whereas most monitor morbidity. METHODOLOGY/PRINCIPAL FINDINGS: We developed a simple model based on Poisson seasonal regression to predict excess cases of pneumonia and influenza mortality during influenza epidemics, based on influenza morbidity data and the dominant types/subtypes of circulating viruses. Epidemics were classified in three levels of mortality burden (“high”, “moderate” and “low”). The model was fitted on 14 influenza seasons and was validated on six subsequent influenza seasons. Five out of the six seasons in the validation set were correctly classified. The average absolute difference between observed and predicted mortality was 2.8 per 100,000 (18% of the average excess mortality) and Spearman's rank correlation coefficient was 0.89 (P = 0.05). CONCLUSIONS/SIGNIFICANCE: The method described here can be used to estimate the influenza mortality burden in countries where specific pneumonia and influenza mortality surveillance data are not available

    Accuracy of syndrome definitions based on diagnoses in physician claims

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community clinics offer potential for timelier outbreak detection and monitoring than emergency departments. However, the accuracy of syndrome definitions used in surveillance has never been evaluated in community settings. This study's objective was to assess the accuracy of syndrome definitions based on diagnostic codes in physician claims for identifying 5 syndromes (fever, gastrointestinal, neurological, rash, and respiratory including influenza-like illness) in community clinics.</p> <p>Methods</p> <p>We selected a random sample of 3,600 community-based primary care physicians who practiced in the fee-for-service system in the province of Quebec, Canada in 2005-2007. We randomly selected 10 visits per physician from their claims, stratifying on syndrome type and presence, diagnosis, and month. Double-blinded chart reviews were conducted by telephone with consenting physicians to obtain information on patient diagnoses for each sampled visit. The sensitivity, specificity, and positive predictive value (PPV) of physician claims were estimated by comparison to chart review.</p> <p>Results</p> <p>1,098 (30.5%) physicians completed the chart review. A chart entry on the date of the corresponding claim was found for 10,529 (95.9%) visits. The sensitivity of syndrome definitions based on diagnostic codes in physician claims was low, ranging from 0.11 (fever) to 0.44 (respiratory), the specificity was high, and the PPV was moderate to high, ranging from 0.59 (fever) to 0.85 (respiratory). We found that rarely used diagnostic codes had a higher probability of being false-positives, and that more commonly used diagnostic codes had a higher PPV.</p> <p>Conclusions</p> <p>Future research should identify physician, patient, and encounter characteristics associated with the accuracy of diagnostic codes in physician claims. This would enable public health to improve syndromic surveillance, either by focusing on physician claims whose diagnostic code is more likely to be accurate, or by using all physician claims and weighing each according to the likelihood that its diagnostic code is accurate.</p

    Toward unsupervised outbreak detection through visual perception of new patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistical algorithms are routinely used to detect outbreaks of well-defined syndromes, such as influenza-like illness. These methods cannot be applied to the detection of emerging diseases for which no preexisting information is available.</p> <p>This paper presents a method aimed at facilitating the detection of outbreaks, when there is no a priori knowledge of the clinical presentation of cases.</p> <p>Methods</p> <p>The method uses a visual representation of the symptoms and diseases coded during a patient consultation according to the International Classification of Primary Care 2<sup>nd </sup>version (ICPC-2). The surveillance data are transformed into color-coded cells, ranging from white to red, reflecting the increasing frequency of observed signs. They are placed in a graphic reference frame mimicking body anatomy. Simple visual observation of color-change patterns over time, concerning a single code or a combination of codes, enables detection in the setting of interest.</p> <p>Results</p> <p>The method is demonstrated through retrospective analyses of two data sets: description of the patients referred to the hospital by their general practitioners (GPs) participating in the French Sentinel Network and description of patients directly consulting at a hospital emergency department (HED).</p> <p>Informative image color-change alert patterns emerged in both cases: the health consequences of the August 2003 heat wave were visualized with GPs' data (but passed unnoticed with conventional surveillance systems), and the flu epidemics, which are routinely detected by standard statistical techniques, were recognized visually with HED data.</p> <p>Conclusion</p> <p>Using human visual pattern-recognition capacities to detect the onset of unexpected health events implies a convenient image representation of epidemiological surveillance and well-trained "epidemiology watchers". Once these two conditions are met, one could imagine that the epidemiology watchers could signal epidemiological alerts, based on "image walls" presenting the local, regional and/or national surveillance patterns, with specialized field epidemiologists assigned to validate the signals detected.</p

    A Study of T Cell Tolerance to the Tumor-Associated Antigen MDM2: Cytokines Can Restore Antigen Responsiveness, but Not High Avidity T Cell Function

    Get PDF
    BACKGROUND: Most tumor-associated antigens (TAA) currently used for immunotherapy of cancer are also expressed in normal tissues, which may induce tolerance and impair T cell-mediated immunity. However, there is limited information about how physiological expression in normal tissues alters the function of TAA-specific T cells. METHODOLOGY/PRINCIPAL FINDINGS: We used a T cell receptor transgenic model to study how MDM2 expression in normal tissues affects the function of T cells specific for this TAA that is found at high levels in many different types of tumors. We found that some MDM2-specific T cells escaped thymic deletion and persisted in the peripheral T cell pool. When stimulated with antigen, these T cells readily initiated cell division but failed to proliferate and expand, which was associated with a high rate of apoptosis. Both IL-2 and IL-15 efficiently rescued T cell survival and antigen-specific T cell proliferation, while IL-7 and IL-21 were ineffective. Antigen-stimulated T cells showed impaired expression of the effector molecules CD43, granzyme-B and IFN-γ, a defect that was completely restored when T cells were stimulated in the presence of IL-2. In contrast, IL-15 and IL-21 only restored the expression of CD43 and granzyme-B, but not IFN-γ production. Finally, peptide titration experiments with IL-2 rescued T cells indicated that they were of lower avidity than non-tolerant control T cells expressing the same TCR. CONCLUSIONS/SIGNIFICANCE: These data indicate that cytokines can rescue the antigen-specific proliferation and effector function of MDM2-specific T cells, although this does not lead to the recovery of high avidity T cell function. This study sheds light on possible limitations of immunotherapy approaches that target widely expressed TAA, such as MDM2

    Online detection and quantification of epidemics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Time series data are increasingly available in health care, especially for the purpose of disease surveillance. The analysis of such data has long used periodic regression models to detect outbreaks and estimate epidemic burdens. However, implementation of the method may be difficult due to lack of statistical expertise. No dedicated tool is available to perform and guide analyses.</p> <p>Results</p> <p>We developed an online computer application allowing analysis of epidemiologic time series. The system is available online at <url>http://www.u707.jussieu.fr/periodic_regression/</url>. The data is assumed to consist of a periodic baseline level and irregularly occurring epidemics. The program allows estimating the periodic baseline level and associated upper forecast limit. The latter defines a threshold for epidemic detection. The burden of an epidemic is defined as the cumulated signal in excess of the baseline estimate. The user is guided through the necessary choices for analysis. We illustrate the usage of the online epidemic analysis tool with two examples: the retrospective detection and quantification of excess pneumonia and influenza (P&I) mortality, and the prospective surveillance of gastrointestinal disease (diarrhoea).</p> <p>Conclusion</p> <p>The online application allows easy detection of special events in an epidemiologic time series and quantification of excess mortality/morbidity as a change from baseline. It should be a valuable tool for field and public health practitioners.</p

    Lack of basic and luxury goods and health-related dysfunction in older persons; Findings from the longitudinal SMILE study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More so than the traditional socioeconomic indicators, such as education and income, wealth reflects the accumulation of resources and makes socioeconomic ranking manifest and explicitly visible to the outside world. While the lack of basic goods, such as a refrigerator, may affect health directly, via biological pathways, the lack of luxury goods, such as an LCD television, may affect health indirectly through psychosocial mechanisms. We set out to examine, firstly, the relevance of both basic and luxury goods in explaining health-related dysfunction in older persons, and, secondly, the extent to which these associations are independent of traditional socioeconomic indicators.</p> <p>Methods</p> <p>Cross-sectional and longitudinal data from 2067 men and women aged 55 years and older who participated in the Study on Medical Information and Lifestyles Eindhoven (SMILE) were gathered. Logistic regression analyses were used to study the relation between a lack of basic and luxury goods and health-related function, assessed with two sub-domains of the SF-36.</p> <p>Results</p> <p>The lack of basic goods was closely related to incident physical (OR = 2.32) and mental (OR = 2.12) dysfunction, even when the traditional measures of socioeconomic status, i.e. education or income, were taken into account. Cross-sectional analyses, in which basic and luxury goods were compared, showed that the lack of basic goods was strongly associated with mental dysfunction. Lack of luxury goods was, however, not related to dysfunction.</p> <p>Conclusion</p> <p>Even in a relatively wealthy country like the Netherlands, the lack of certain basic goods is not uncommon. More importantly, lack of basic goods, as an indicator of wealth, was strongly related to health-related dysfunction also when traditional measures of socioeconomic status were taken into account. In contrast, no effects of luxury goods on physical or mental dysfunction were found. Future longitudinal research is necessary to clarify the precise mechanisms underlying these effects.</p

    Subcellular peptide localization in single identified neurons by capillary microsampling mass spectrometry

    Get PDF
    Single cell mass spectrometry (MS) is uniquely positioned for the sequencing and identification of peptides in rare cells. Small peptides can take on different roles in subcellular compartments. Whereas some peptides serve as neurotransmitters in the cytoplasm, they can also function as transcription factors in the nucleus. Thus, there is a need to analyze the subcellular peptide compositions in identified single cells. Here, we apply capillary microsampling MS with ion mobility separation for the sequencing of peptides in single neurons of the mollusk Lymnaea stagnalis, and the analysis of peptide distributions between the cytoplasm and nucleus of identified single neurons that are known to express cardioactive Phe-Met-Arg-Phe amide-like (FMRFamide-like) neuropeptides. Nuclei and cytoplasm of Type 1 and Type 2 F group (Fgp) neurons were analyzed for neuropeptides cleaved from the protein precursors encoded by alternative splicing products of the FMRFamide gene. Relative abundances of nine neuropeptides were determined in the cytoplasm. The nuclei contained six of these peptides at different abundances. Enabled by its relative enrichment in Fgp neurons, a new 28-residue neuropeptide was sequenced by tandem MS

    Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes

    Get PDF
    Networks of regulatory relations between transcription factors (TF) and their target genes (TG)- implemented through TF binding sites (TFBS)- are key features of biology. An idealized approach to solving such networks consists of starting from a consensus TFBS or a position weight matrix (PWM) to generate a high accuracy list of candidate TGs for biological validation. Developing and evaluating such approaches remains a formidable challenge in regulatory bioinformatics. We perform a benchmark study on 34 Drosophila TFs to assess existing TFBS and cis-regulatory module (CRM) detection methods, with a strong focus on the use of multiple genomes. Particularly, for CRM-modelling we investigate the addition of orthologous sites to a known PWM to construct phyloPWMs and we assess the added value of phylogenentic footprinting to predict contextual motifs around known TFBSs. For CRM-prediction, we compare motif conservation with network-level conservation approaches across multiple genomes. Choosing the optimal training and scoring strategies strongly enhances the performance of TG prediction for more than half of the tested TFs. Finally, we analyse a 35th TF, namely Eyeless, and find a significant overlap between predicted TGs and candidate TGs identified by microarray expression studies. In summary we identify several ways to optimize TF-specific TG predictions, some of which can be applied to all TFs, and others that can be applied only to particular TFs. The ability to model known TF-TG relations, together with the use of multiple genomes, results in a significant step forward in solving the architecture of gene regulatory networks
    corecore