688 research outputs found

    Study of thermal conductivity design for thermal loaded geomaterials.

    Get PDF
    Soil thermal conductivity plays preponderant role in many geoengineering projects involving thermal effects, such as high voltage underground power cables, oil and gas pipelines, nuclear waste disposal facilities, ground heat energy storage and heat exchanger piles. A thorough understanding of thermal conductivity is necessary in heat transfer modelling. Depending upon the application and desired purpose of such projects, materials with either high or low thermal conductivity are used. Materials with high thermal conductivity are desirable in cases such as high voltage underground power cables to dissipate the generated heat rapidly to the surrounding soil. On the other hand, ground heat energy storage needs materials with low thermal conductivity and high heat capacity to hinder the heat energy loss. In this study, high conductive backfill materials for underground power cables were analysed based on existing knowledge of heat transfer mechanism in granular media and models of soil thermal conductivity in both dry and wet conditions (Yun and Santamarina, 2007, Cortes and Santamarina, 2009). Several researchers have developed theoretical, empirical and semi-empirical models to estimate the thermal conductivity of natural soils and crushed rock materials based on various factors such as particle shape and size, particle distribution, mineral composition, dry density, and wate

    YAC contigs of the Rab1 and wobbler (wr) spinal muscular atrophy gene region on proximal mouse chromosome 11 and of the homologous region on human chromosome 2p

    Get PDF
    powerful tool to advance the identiÂźcation of gene com-Despite rapid progress in the physical characteriza- plexes and of disease genes. In this respect, the analysis tion of murine and human genomes, little molecular in- of human chromosomes 16 and 19 (Nowak, 1995) and formation is available on certain regions, e.g., proximal mouse chromosomes 1 (Hunter et al., 1994) and 17 (Cox mouse chromosome 11 (Chr 11) and human chromosome et al., 1993) as well as of human and murine X chromo-2p (Chr 2p). We have localized the wobbler spinal atrophy somes is particularly far advanced (Hamvas et al., 1993). gene wr to proximal mouse Chr 11, tightly linked toRab1, On the other hand, such extensive information is not a gene coding for a small GTP-binding protein, and Glns- available for mouse proximal chromosome 11 (Chr 11) ps1, an intronless pseudogene of the glutamine synthe- and human chromosome 2p (Chr 2p) (Fig. 1; cf. Berry et tase gene. We have now used these markers to construct al., 1995; Nowak, 1995), known to share at least the genesa 1.3-Mb yeast artiÂźcial chromosome (YAC) contig of the for the reticuloendotheliosis oncogene (Brownell et al.,Rab1 region on mouse Chr 11. Four YAC clones isolated 1985), for a brain-speciÂźcb-spectrin isoform (Bloom et al.,from two independent YAC libraries were characterized 1992), and for cytoplasmic malate dehydrogenase (Ball etby rare-cutting analysis, ÂŻuorescence in situ hybridiza-al., 1994). However, comparing the segregation map oftion (FISH), and sequence-tagged site (STS) isolation and the mouse with the human cytogenetic map, a colinearmapping. Rab1 and Glns-ps1 were found to be only 20

    Left behind and united by populism? Populism’s multiple roots in feelings of lacking societal recognition

    Get PDF
    A prominent but underspecified explanation for the rise of populism points to individuals’ feelings of being “left behind” by the development of society. At its core lies the claim that support for populism is driven by the feeling of lacking the societal recognition one deserves. Our contribution builds on the insight that individuals can feel they lack recognition in different ways and for different reasons. We argue that—because of this multifaceted character—the common perception of being neglected by society unites otherwise heterogeneous segments of the population in their support for populism. Relying on data from the German Longitudinal Election Study (GLES) Pre-Election Cross-Section 2021, our preregistered study investigated the multiple roots of populist attitudes in feelings of lacking societal recognition in two steps. First, our results indicate that, from rural residents to sociocultural conservatives or low-income citizens, seemingly unrelated segments of society harbor feelings of lacking recognition, but for distinct reasons. Second, as anticipated, each of the distinct feelings of lacking recognition are associated with populist attitudes. These findings underscore the relevance of seemingly unpolitical factors that are deeply ingrained in the human psyche for understanding current populist sentiment. Overall, by integrating previously disparate perspectives on the rise of populism, the study offers a novel conceptualization of “feeling left behind” and explains how populism can give rise to unusual alliances that cut across traditional cleavages

    Energy landscapes in random systems, driven interfaces and wetting

    Get PDF
    We discuss the zero-temperature susceptibility of elastic manifolds with quenched randomness. It diverges with system size due to low-lying local minima. The distribution of energy gaps is deduced to be constant in the limit of vanishing gaps by comparing numerics with a probabilistic argument. The typical manifold response arises from a level-crossing phenomenon and implies that wetting in random systems begins with a discrete transition. The associated ``jump field'' scales as ∌L−5/3 \sim L^{-5/3} and L−2.2L^{-2.2} for (1+1) and (2+1) dimensional manifolds with random bond disorder.Comment: Accepted for publication in Phys. Rev. Let

    A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    Full text link
    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    The mean-squared displacement of a molecule moving in a glassy system

    Full text link
    The mean-squared displacement (MSD) of a hard sphere and of a dumbbell molecule consisting of two fused hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The MSD is found to exhibit a large time interval for structural relaxation prior to the onset of the α\alpha-process which cannot be described by the asymptotic formulas for the mode-coupling-theory-bifurcation dynamics. The α\alpha-process for molecules with a large elongation is shown to exhibit an anomalously wide cross-over interval between the end of the von-Schweidler decay and the beginning of normal diffusion. The diffusivity of the molecule is predicted to vary non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure
    • 

    corecore