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Mechanical relaxation in glasses and at the glass transition
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The Gilroy-Phillips model of relaxational jumps in asymmetric double-well potentials, developed for the
Arrhenius-type secondary relaxations of the glass phase, is extended to a formal description of the breakdown
of the shear modulus at the glass transition, éhprocess. The extension requires the introduction of two
separate parts of the barrier distribution functidiv), with a different temperature behavior of primary and
secondary parts, respectively. The time-temperature scaling ef firecess, together with a sum rule for the
whole barrier distribution function, implies a strong rise of the integrated secondary relaxation with increasing
temperature above the glass transition. Thus one gets a quantitative relation between the fragility of the glass
former and the fast rise of the picosecond process observed in neutron and Raman scattering. The formalism is
applied to literature data of polystyrene, vitreous silica and a sodium silicate glass. In the glass phase of
polystyrene, one finds a temperature-independent secondary barrier distribution function, in agreement with an
earlier Raman result from the literature. Above the glass transition, the secondary barrier distribution function
increases with temperature as predicted. The findings allow for an interpretation of the fragility and the entropy
crisis at the glass transition.
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[. INTRODUCTION tion was solved by Hoffman and PfeifféBut none of these
early attempts dealt simultaneously with a broad distribution
Relaxation in glasses, sometimes also called secondaiy both quantities, the barrier height, and the asymmetry of
relaxation to distinguish it from the primary relaxation at thethe wells. The necessity of such a double distribution was
glass transition, is generally believedto be well described recognized in the tunneling modebr the two-level states
in terms of the Arrhenius-Kramers pictuteyith a relaxation  peloy 1 K in 1972. The tunneling model was a major break-
time 7, given by the Arrhenius relation through; in the same year, Pollak and Bfkepplied the
double distribution concept to classical relaxation in order to
explain the ac conductivity of glasses. Nine years later, Gil-
where 7, is a microscopic time of the order of 18 sec- oy and Phillips* extended the scheme to a general descrip-
onds,V is the energy of the barrier between two energytion of mechanical and dielectric relaxation processes in
minima of the system, and is the temperature. glasses at higher temperatures. Also, they drew a parallel
In contrast, the primary relaxation aprocess, the onset between mechanical relaxation data and the quasielastic part
of the flow process at the glass transition temperafiyrand ~ of the Raman scattering. At the end of the same decade, the

V= TOeV/kBT, (1)

above, seems to follow a much steeper¥iw soft-potential model postulated a relation between the tunnel-
g ing states and the low barrier classical relaxation processes in
7= o170, (2)  glasseqan excellent review of the soft-potential model has

been given by Parshif). Nevertheless, up to now only a few

whereA and T, are constants with the dimension of a tem- X
0 checks of these postulates for dynamical mechanica;*®

perature. This is the well-known empirical Vogel-Fulcher-

Tammann(VFT) or Williams-Landel-Ferr(WLF) equation. _amaﬁl'm’l? and neutroff data have been reported in the
To, the Vogel-Fulcher temperature, is smaller tigyy the ~ literature. o , . .
closer it lies toT,, the more fragile is the glass former. The present paper begins in Sec. Il with a discussion of

Since the Arrhenius law has a sound microscopicthe Gilroy-Phillips model, and a derivation of its connection
backgrouniand the VFT or WLF equation has not, it seemst0 rheology. It turns out that one can define a barrier distri-
reasonable to build a joint quantitative description on thebution functionf(V) to describe the mechanical shear relax-
former, bearing in mind the physical difference of the twoation at different temperatures and frequencies. The integral
processes. This is the intention of the present paper. of this barrier distribution function over all barrier heights

In glasses, one has to reckon with a whole distribution ofmust equal 1 to bring the shear modulus down to zero. In
relaxational jumps, not only over different potential barrierorder to include the flow process into the same scheme, one
heights, but also between energy minima of different energyseparates(V) into two parts,f4(V) andf (V). The first of
Thus one has to extend the classical Arrhenius-Kramerthese describes the secondary relaxations in the glass phase,
treatmertt of a thermally activated relaxation process in athe second describes theprocess in the undercooled liquid,
symmetric double-well potential to deal with a broad distri- respectively. As will be seen, the sum rule for the total bar-
bution of barrier heights and asymmetries. A distribution inrier distribution function supplies a quantitative basis for An-
the barrier heights was considered by lifich,” but only for  gell’s conjecturé® of a relation between the fragility and the
symmetric potentials. An asymmetric multiminimum situa- rise of the fast picosecond process above the glass transition.

0163-1829/2001/630)/10420313)/$15.00 63 104203-1 ©2001 The American Physical Society



U. BUCHENAU PHYSICAL REVIEW B 63 104203

9°F _ 72
d€®  4kgT cosH(A/2kgT)

4

The second derivative determines the contribution of that
specific relaxing entity to the difference between the shear
moduli at infinite and zero frequency. The equation shows
that the main influence on the shear modulus is due to relax-
ation in potentials with asymmetries smaller thigsT; for
larger asymmetries the influence decreases rapidly because
of the square of the hyperbolic cosine in the denominator.

A

FIG. 1. Asymmetric double-well potential with barrier height
and asymmetnA as a function of a generalized coordinate. B. The barrier distribution function (V)

) . ) We want to calculate the frequency dependence of the
The low-barrier part off (V) determines the relaxational shear modulus under the assumption of slowly varying dis-
part of neutron and Raman scattering. The correspondingipution functions in the parametexsandA. In detail, we
equations are derived. . assume a number density of relaxing entiti€¥,A) and a
_ Section IIl applies the equations to determi®) from  coypling constanty(V,A) which are both approximately
literature data for amorphous polystyrene, vitreous silica, angonstant if eithei or A is varied by an amount of the order
a sodium silicate glass. From the results, one gets an impregs the thermal energigT.
sion as to whether one gets the same secondary barrier dis- ynger this assumption, it is safe to neglect as well the
tribution function from different methods, in particular if one jnfiluence of the asymmetry on the relaxation time. We as-
compares the high-frequency neutron, Raman, and Brillouigme the relaxation time, to be given by the Arrhenius Eq.
scattering results with the low-frequency torsion penduluwl)_
or creep data. Furthermore, one gets a feeling for the amount \ye then integrate over the asymmethyto obtain the
of reduction of the shear modulus by the secondary relaxsiep 5G between the shear moduli at infinite and zero fre-

ation processes in the glass phase. As we will see, the findyyency from all relaxation centers with barrier heights be-
ings suggest a generalized Maxwell criterion for the onset ofeenV andV+dVv

the glass transition, namely that the flow begins when the
shear response from the secondary relaxation equals the elas- 2
. . . 4 o v°n(V,A)dA

tic one. Section IV compiles and discusses these results and 5G=dV )
their possible significance for our view of the glass transi- ~ 4kgT cost(A/2kgT)
tion. Summary and conclusions are given in Sec. V.

®

Since one has only contributions in the near neighborhood of
A=0, wheren(V,A)~n(V,0), and since
Il. THE GILROY-PHILLIPS MODEL

A. The asymmetric double-well potential foc d—A (6)

:4kBT,
Let us denote the shear strain bythe shear stress hy ~ COSH(A/2KkgT)

and the(infinite frequency shear modulus bg. G will gen- g6 finds

erally depend on the temperature

~ The structural relaxation is taken to be a superposition of 5G=?n(V,0)dV. (7)

independent Debye relaxation centers in asymmetric double-

well potentials with two minima, as shown in Fig. 1. The This is different from a single relaxation in a symmetric po-

energy of the left minimum is- A/2 and the energy of the tential, where the step in the modulus is inversely propor-

right minimum is+ A/2. The height of the barrier i¥. tional to the temperature. The physical reason for this differ-
The interaction between the shear strain and the Debyence is clear: As the temperature rises, relaxation centers

relaxation center is described by the change of the asymmavith higher and higher asymmetry begin to contribute to the

try under the influence of the strain. The interaction is charstep in the modulus. This is an important difference between

acterized by the coupling parametgy leading to an asym- relaxation in crystals and relaxation in disordered matter.

metry A+ ye of the relaxation in the strained glass.must The temperature-independent step in the modulus is de-
be considered to depend both Wrand A. termined by the barrier distribution functidiiV), defined by
The free energy of the relaxation center reads
y*n(V,0)
(V=g — ®

F=—kgTIn , 3)

?’6 A+ ye)

2 cos . o o

2kgT This parameter combination can be argued to remain inde-
pendent of temperature, evenGf varies with temperature,

which has the second derivative with respect to the shearonsidering the relaxing entity as a small misfit region in an

distortion e elastic mediunt® a misfit region which is able to change the
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sign of the misfit by jumping over the barrier. Here, how- %

ever, this argument will not be given in detail. G(t):Ge+J H(r)e '"dInT (13
The frequency dependence of the complex shear modulus o

at the frequencyv and the temperatur€ reads and translates into

G'(w,T) G B 222dV
Glol_Ce ff(V)—w =
G G

(9) G(t):GeJrGf f(V)e Yvdv. (14)
0 1+ a)ZT\Z/ 0

For a viscoelastic liquid, the zero frequency modulBg

G'(w,T » wnydV _
(,T) :J ; v (10 0, so one must have
G 1+ wzrv .
wherery is a function ofV by the Arrhenius relation Eq1), fo f(V)dv=1. (15
and G, is the zero frequency modulus after the decay of all
the relaxations in the system. This is the sum rule for the barrier distribution function

These two equations describe the real and the imaginarf(V). It has important consequences for the connection be-
part of the frequency-dependent shear modulus at all fretween primary and secondary relaxation, as discussed in the
guencies and temperatures. As long as one can reckon withrext subsection.
temperature-independent number of uncoupled relaxation Next, there is Ferry’'s Eq.20) for the compliance
centers, the barrier distribution functidifV) remains tem-
perature independent.

But Egs.(9) and(10) have a much higher potential than a JH= €+ J’,
simple description of uncoupled relaxation centers in disor-
dered matter. If one allows for a temperature dependence afhere 7, is the viscosity, which translates into
the barrier distribution functiori(V), one can describe any

© t
L(n)(1-e Y)dInt+—,  (16)
o 7o

relaxational behavior. In particular, it is possible to obtain a 1 * i/ t

unified picture of the relaxational properties of the glass and JO=35| 1+ fo I(V)(1=ev)dv |+ o (17)

the high-viscosity flow of the undercooled liquid. This is the

central point of the present paper. The viscosityn, can be calculated from Ferry's E(R8)
As shown in the next subsection, one can rewrite the con-

ventional rheological expressidisin terms of (V). The *

advantage of the choice df(V) lies in the possibility to 70~ J_WTH(T)dIn ™ (18)

distinguish the trivial Arrhenius temperature dependence

from other, nontrivial temperature changes. These nontrivialvhich translates into

temperature changes will then reflect in a temperature depen-

dence off (V). 70=G fo V)V, (19

C. Rheological equations in terms off (V)
Ferry’s Eqs.(21) and(22), the transformation front (7)

Comparing the two expressions, Ed9) and (10), to ;[/0 L(r) and back, read

those in the textbooks, for instance the one on polymers b
Ferny! [Chap. 3, Eqs(23) and (24)], one finds the relation

between the rheological relaxation functith(7) and the L= H . (20)
barrier distribution functiorf (V) = H(u) 2012
Ge— JlmT/u_ldlnu +7°H
H(7oe"*8T) =H(7,)=GkgTf(V). (11)
and

With this equation, one can rewrite all the exact and ap-
proximate rheological relatioAsin terms of f(V). To do L
this, one first has to define a convenient equivalent function H= 1 = L) T2 . ()
I (V) to the conventional rheological functidr(7), which is _+f dinu— —| + 722
needed whenever one wants to calculate a compliance G J-=1-ul7 o

L(7g8"%T) =L (7y)= kBTCL(V) 12 They translate into
f(V)

In the following, the most important equations of chapter (V)= o 2 (22
3 of Ferry’s book! are translated into the Gilroy-Phillips [E—h(V) +[ kg TF(V)]?
notation. Ferry’'s Eq(19) for the time-dependent modulus
G(t) reads with
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5 - - - - - denoted as thermorheological simplicity. Since the factor
GkgT in Eq. (11) betweenH(7) and f(V) varies only
4r ] weakly with temperature, this implies that the primary bar-
= Ll o-peak = | rier distribution functiorf ,(V) is an essentially temperature-

independent function o¥/—V_(T), whereV_(T) denotes
the maximum of this strongly peaked function. From the

fv) (V)

2r | Vogel-Fulcher law Eq(2), one expects the temperature de-
1+ secondary relaxation E pendence
1T T(Tg—To)
! ' 3 Vo(T) =V (Tg) 28
00 02 04 06 08 1.0 12 (T) ( g)Tg(T—TO) (28)

barrier height VNa

showing the divergence of the fictive Arrhenius barrier of the
flow process towards the Vogel-Fulcher temperafiye
If time-temperature scaling holds, the weigiy of the o

FIG. 2. Secondary barrier distribution functiofy(V) (the
shaded area together with the cutoff by ther-relaxation peak

(schematif: process, given by
11(V) = f ’ f(E)dE 23 -
V)= | e (V=E)kgT] -1 @3 Wo= fo fa(V)dV (29
and should be temperature independent. In the comparison to ex-
(V) periment, we will see that, tends to be close to 1/2.
f(V)= - (24) What does this imply for the secondary relaxations? The
1— ™G L (V) | [ keTIV) T2 a process is also an upper cutoff for the secondary relax-
7o : B ation; at the end of the process, the long-time shear modulus
ith is zero. If a secondary relaxation barrier is too high, the
wi relaxing entity will flow away before it has a chance to jump.
- I(E)dE Therefore there is a steep cutoff for the secondary barrier
|,(V)=J . (25) distribution functionf¢(V) at V,(T). According to the sum
With these exact equations, one can calculate the me- v.(T) 1
chanical response for any type of shear experiment for a fo fs(v)dvzl_wazconstez_ (30)

given barrier distribution functiofi(V). The reverse, the de-
termination off(V) from experimental data, is more diffi-
cult, because the exact equations are integral equations. Ney- With this sum rule, the decrease8f(T) with increasing

ertheless, one can start to determine a first approximation ¢mperature implies that the secondary barrier distribution

f(V) from measurements &' andG” using the crude ap- function f4(V) must increasewith increasing temperature.
proximations This increase will be stronger for more fragile glass formers.

Such a connection between the fragility and the rise of the
G’ kgT In(1/w o) fast process aboveTy has been indeed postulated
<G 1= f(V)dv (260 empirically® here we will be able to quantify this connec-
tion.
and The increase of (V) above the glass temperature can be
characterized to first order by

0

”

f[kBTm(l/wTo)]: ;WBT (27)

fs(V)= fs(ViTg) 1+ ayV)

T-T,4 31
—2. @

D. Primary and secondary relaxation ’

It is quite clear that one needs to distinguish secondary One can define an average temperature coefficigrity
and primary processes, because their physical mechanism is
different. Thus one has to distinguish betwek(V), the P 1 fV“(Tg)a (V) f(V)dV (32)

. oo ; s S S .

secondary barrier distribution function of the secondary 1-w, Jo
Arrhenius relaxation, and,(V), the primary barrier distri-
bution function for the primaryx process or flow process Differentiating the sum rule Eq30) for f4(V) with re-
(see Fig. 2. spect to the temperature, calculating the derivative (fT)

For many glass formers, in particular polymeric ofies, with respect to temperature from E8) and using Eq(32),
H.(7/7,) is independent of the temperature. This is theone finds the relation between the fragility and the average
time-temperature scaling of the process, sometimes also rise of the secondary relaxation
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To ;S(l_wa) assume a Gaussian centered/atwith weightw,=1/2 and
= . (33)  with a full width at half maximum denoted b¥,. Calcu-
Tg=To  ValTg)fdVa(Ty)] lating G(t) from Eq.(13), one then finds fairly Kohlrausch-
This relation will become clearer in the next subsection,iKe curves for the simple generic case of Fig. 2, at least in

where the simplest possible case of a constant secondafye _tme region of the a process, with G,
barrier distribution function is discussed. ~0.55...0.75 G andr, about 80% of the Arrhenius value

for V,. There is a deviation of the Kohlrausch fits from the

calculated curves, but it is so small that it would be hard to

see in an experiment. It turns out that the ratip/V , deter-
The deep implications of the Gilroy-Phillips formulation mines the Kohlrausch expone#t if it is 0.05, theng~0.7;

of the a-process are more clearly seen in the simplest posfor the ratio 0.1,6~0.5 and for the ratio 0.23~0.3. So the

sible case, shown in Fig. 2. Let us assufgg/)=const and  broaderf ,(V), the more stretched the relaxation, not unex-

as(V)=const. If the rise of ;(V) with temperature is strictly pected.

E. The generic casd (V) =const

linear, Eqs.(30) and(31) imply Note this is merely a change of description. The Gilroy-
Phillips formulation does not really explain the puzzling fea-
V(T)= Vo(Tg)Tg (34  lures of the glass transition, the fragility, the entropy crisis

and the stretching. But it supplies a description which allows
to look for another explanation. We will return to this point
in the discussion.

In order to measurer (V) in the picosecond range by
scattering methods, one still needs the equations for the

which is not exactly equal, but very close to the empirical
Vogel-Fulcher-Tammann or Williams-Landel-Ferry E@),
with the Vogel-Fulcher temperatuiig, given by

1 neutron- and Raman-scattering functions in terms of the bar-
TOZTg(l_ _)_ (35) rier distribution function. These will be derived in the next
Us subsection, the last part of the description of the Gilroy-

It is obvious how this comes about: @§, the density of Phillips model.

secondary processes extrapolates to zero. Thus one has to

proceed to infinitely high barriers to satisfy the sum rule F. Neutron and Raman scattering
(30). This gives a different view on the puzzling fragility of
glass formers: the abnormal temperature dependence is
consequence of the time-temperature scaling ofdhgro-

One can carry out the same integrations over asymmetries
dhd barrier heights as in the shear relaxation for the neutron-
. ) . scattering cross section. Let us begin with a single asymmet-
cess, and of a strictly linear rise of the number of secondary,.” 4o ple-well potential, let us assume that atprhas a

relaxing units with temperature. . ! :
. o coherent scattering length, and an incoherent scatterin
The decrease of the secondary barrier distribution func- 9 g% 9

tion f¢(V) implies a decrease of the number of minima of theCross sectior;, and that it jumps from the position d;/2
glass former. Thus one gets an equéﬁtyetween the Vogel- to dj/2, with the origin of the coordinate system in the
Fulcher and the Kauzmann temperatilife, the latter being Middle between the two.
defined as the temperature where the excess entropy of the For the incoherent inelastic scattering in the one-phonon
glass former over the corresponding crystalline system exapproximatiort,’ it suffices to calculate the mean-square dis-
trapolates to zero. If there are no minima between which th@lacements. These can be obtained from the Boltzmann oc-
g|ass former can jump, there is no excess entropy, the o|gupation factors of the two minima of the potential. The
Adam-Gibbs ide&® average position vectar, of atomj is given by

Note that Eq.(35) for the Vogel-Fulcher or Kauzmann
temperature holds not only in the generic case of a constant -
secondary barrier distribution function, but for ahyV), as (F->= _ ﬁtan A 37)
long as one can reckon with the same strictly linear tempera- ! 2 kgT
ture rise of the function for alV/.

To Complete the discussion of the glaSS tranSitionand its average square is
peculiaritie§ in the Gilroy-Phillips picture, let us look at the
stretching of thea process, empirically described by the
Kohlrausch equation (F,?): ZJ 38)

G(t)=Gexf — (t/7,)"], (36)

where the Kohlrausch exponegtlies® between 0.3 and 0.7, SO the mean-square displacement contribution of the relax-
and G, is a free parameter. The small@ is, the more ation to atomj reads
stretched is thex relaxation, and the stronger it deviates
from a simple exponential decay. 42

In order to calculates, the definition of the primary bar- (U=(r?)—(ry2= ——>1 (39)
rier distribution functiorf ,(V) must be more specific. Let us ! J . 4 cosRA/2kg T
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In this expression, we recognize the same inverse’asin ~ has a fourth paramete®, for the density of these modes.
Eq. (4), which can be again integrated over the asymmetries\ith this parameter, the relation betwer¢V,0)d? and the
if the jump eigenvector stays essentially the same for theecondary barrier distribution functidp(V) reads
different local asymmetries.

The scattering contribution is a Lorentzian with a half 2ZWZpCt
width at half maximum inw given by the inverse relaxation van(V,0d W: fs(V), (44)
time, determined by the barrier height according to the s
Arrhenius Eq.(1). The weight of the contribution i8(Q, ) wherep is the mass density. For glasses consisting of more
is determined by the number of relaxations and the weightethan one sort of atoms, the relation might fail if strongly and

sum of the jump vectors weakly scattering atoms have different jump widths. But
with this relation, one can determine the secondary barrier
3 0,d? distribution functionfg(V) from neutron scattering measure-
2= (40) : ) )
pu ments without adaptable parameter, using soft-potential pa-
rameters from the literature.
The sum is over all atoms in the sample, amdis their The Raman scattering from relaxations in glasses is not so
average incoherent cross section. easily calculated. However, experiefit® shows that neu-
Integrating over the barrier heights as well, one gets thdron and Raman scattering give the same spectra as long as
equation for the incoherent scattering one stays at frequencies well below the boson peak. Thus
one can use the Raman spectra as one uses incoherent neu-
1 kéTzde2 tron scattering data, with the disadvantage of an additional
Sinc(Q’w):Ua”(kBme_m’O) “ 6w 4D general adaptable parameter for the overall intensity. The

advantage of the Raman technique is a much higher intensity
wherev, is the atomic volume, and the prefactor 1/3 stemsand a much better resolution, allowing one to assess much
from the directional average. This equation is again an aprower frequencies.
proximation, which holds if (V) does not vary strongly with
V. The coherent scattering is obtained replaciigy by IIl. COMPARISON TO EXPERIMENT
dZon(Q) with
A. Values from different techniques

3 N
dgoh(Q)zngz < ‘ EJ: b;€°RiQd;

given technique. Creep measurements cover the time range
R o from 0.1 s to several weeks. This is a measurement in the
whereR; is the equilibrium position of atojy b is the av-  time domain, applied mostly to measurements of ¢hgro-
erage scattering length and the brackets indicate the orientaess at the glass transition, which does not obey the Arrhen-
tional averaging over the structure factor of the relaxationius relation Eq(1). Nevertheless, one can formally calculate
Even after this averaging, the structure factor need not showarrier heights of the order of 27 to 45T, around 1 eV

a simpleQ? behavior like the incoherent one, but does still for polystyrene T4=373 K) and around 4 eV for vitreous
contain information on the jump vectofs. silica (Tq=1473 K).

The scattering measurements do not di(®&), but rather The torsion pendulum method with frequencies around 1
the producin(V,0)d?. If one wants the proportionality factor Hz sees relaxations around 0.1 s. In terms of the Arrhenius
between those two quantities, one needs additional informaelation with7o=10"12 s, this implies a barrier height of 50
tion about the relaxing entities. However, there is an elegantneV at 20 K. In order to see barriers of 1 eV, one needs a
and general way to obtain this proportionality factor for verytemperature of about 400 K, close to the glass temperature of
low barriers from the soft-potential mod€lwhich describes polystyrene.
the tunneling states and the low-barrier classical relaxation as Proceeding to higher frequencies, one has vibrating reed
similar modes with a double-well potential distribution. It is measurements around 10 kHz, ultrasonic data in the MHz
not very difficult to derive an equation for the barrier distri- range, light scattering Brillouin data around 10 GHz and,
bution functionf(V) as defined here in terms of the defini- finally, Raman and neutron data between a few GHz and a

2> 42) Let us first consider which barriers one samples with a

tions in this paper. One finds few hundred GHz. For the latter two, the lower limit holds
only for the Raman technique; if one looks for the weak

2C quasielastic scattering from secondary relaxations, the neu-
fsp(V) = WT‘V”‘" 43 tron technique in practice has a lower limit of 100 GHz. The

upper limit of about 300 GHz is given by the crossover from
whereC (in principle C, for longitudinal waves and, for  relaxational to vibrational scatterif§3 Thus one sees only
transverse wavess a dimensionless constant of the order ofthe uppermost frequency band of the relaxational scattering
104, which can be taken from acoustic attenuation measurewith neutrons. Nevertheless, neutrons play an important role,
ments below 4 K, andV is the crossover energy between because they serve to validate the Raman scattering data.
tunneling and vibrational modes, which can be measured For the fast relaxation at 200 GHz, the relaxation time is
from the crossover regions of the specific heat or the thermaif the order of a picosecond, only ten times longer than the
conductivity at low temperaturés.The soft-potential model microscopic time scale of the vibrational motion. The

104203-6



MECHANICAL RELAXATION IN GLASSES AND AT THE ... PHYSICAL REVIEW B 63 104203

Arrhenius relation translates this again into a barrier of 50 4 - . -
meV at 300 K. Thus neutron and Raman measurements at ponstyrene 1Hz
room temperature sample the same relaxations that one sees 3 6 Hz

in a torsion pendulum measurement around 20 K. If one is
still in the glass phase at room temperature, one can thus
check the temperature independence of the barrier distribu-
tion functionf (V) [in that casef(V)=1f,(V)] by a compari-

son between a torsion pendulum and a neutron or Raman
experiment. Naturally, the same can be done by a compari-

N

f(v) (1/eV)

-

son of a torsion pendulum and a Brillouin scattering experi- 0 . . e
ment. 0.00 0.05 0.10 0.15 0.20
If one wants to determine the barrier distribution function barrier height V (eV)

from the mechanical damping at different frequencies, one FIG. 3. Secondar o i
. - .3 y barrier distribution functiég(V) calculated
ggenqshef tt(())rgl(())rr?ppegsdrglizrisur;eezseg::n?;g:f]:rf\:geeéalsrﬂfnzz?fom literature data of the mechanical damping of amorphous poly-

' - . styrene in the glass phase at different frequencies. For references
ately t.he r_eal and 'mag”.‘ary part of the shear moduius see text. The line is a fit; the same fit is also shown in Figs. 4, 5, and
The vibrating reed technique measures Youngs moddlus ¢
In terms of the bulk moduluB, the inverse of the compress-

ibility, Youngs modulus reads which provide a much clearer signal. That damping is often

given in terms of the half width at half maximuin of the

9BG Brillouin line. Then
=376 “9
Since that quotient is close td33 it is a reasonable approxi- tané= P (48)

mation to identify the tad=Y'/Y" results of the vibrating
reed technique(in that technigue often denoted & '  wherew is the frequency of the Brillouin line.

=tand) with that of the shear moduluS. The real part of Finally, one problem of the determination (V) is to

the shear modulu&’ can then be estimated to BE/3, or  know G at the temperature of the measurement; usually one
calculated accurately from the above equation if the bulkhas onlyG’ andG”. A way out of this problem is to start at
modulus is known. low temperatures, wher&~G’, determinef(V) via Eq.

A less safe connection is to longitudinal sound measure¢27), and then pursu&’/G to higher temperatures via Eq.
ments, which determine the real and imaginary part of thg26). This way was followed throughout in this paper, at
elastic constanty;, sometimes also denoted as the moduluseast as far as the determination of the secondary relaxation
M. In terms ofB andG, cy; reads was concerne@the primary relaxation is too sharp to use the

crude approximation of Eq27); there, one has to use the

4 exact equations
cu=B+3G. (46) One can try to check th&(T) values by Brillouin light

scattering measurements of the transverse sound waves, usu-
Both contributions are of comparable size. Therefore, if onelly at frequencies around 10 GHz. Even there, one has to
wants to determine taf for the shear modulus from longi- reckon_W|th some influence from the low-barrier p_art of t_he
tudinal sound attenuation data, one has to know the relativéelaxations; this is, however, only a small correction which
size of the two damping contributions from compression and@n be easily done if one h#gV), using Eq.(26).
from shear. Here it should be noted that the mechanical
damping at very low temperatures is quite similar for trans- B. Polystyrene: Secondary relaxation
verse and longitudinal phonons in many glasSess long as
this holds, one can take tahfrom the inverse mean-free
pathl ! of the longitudinal sound wave according to

We begin the comparison to experiment with a heavily
studied glass former, atactic polystyrene, one of the most
fragile substancesan amorphous polymer where one can
rely on a large number of experimental data, both at low
47 temperatures and at the glass transition.

The low-temperature data were evaluated for tempera-

tures above 10 K; at that limiting temperature, one can begin
wherev is the sound velocity. In this equation, the mean-freeto reckon with the validity of the Kramers pictutdsigure 3

path is defined as the distance where the sound-waeegy shows a compilation of many mechanical low-temperature
decreases by &/ data: torsion pendulum data at 1 Ffzat 6 Hz2° vibrating

It is better to use data from transverse sound waves; thereged data at 3, 34, and 87 ki;*?and Brillouin damping of
the damping relates directly to the shear. However, in parlongitudinal sound waves at 10 GE%The data cannot be
ticular for light scattering Brillouin experiments, it is much said to coincide perfectly in this Gilroy-Phillips evaluation;
easier to determine the damping for the longitudinal wavesnevertheless, the agreement is fair enough to support the

|7l
tané= ——,
w
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4 T T T 4 T T T T T
polystyrene ¢ Raman Vv Brilouin T>T_
3t o neutron | 3 B neutron T> Tg i
fit — fitbelow T_
">Y1 = 1 >
Vv ..-%W
polystyrene
1 1 1 0 1 1 1 1 1
8.00 0.05 0.10 0.15 0.20 000 005 010 015 020 025 0.30
barrier height V (eV) barrier height V (eV)
FIG. 4. Secondary barrier distribution functiég(V) calculated FIG. 5. Secondary barrier distribution functiég(V) calculated

from literature data of neutron and Raman scattering from amorfrom literature data of neutron and Brillouin data of amorphous
phous polystyrene in the glass phase. For references see text.  polystyrene, both in the glass phase and above the glass temperature
T4 For references see text.

concept of a constant number density of uncoupled relaxfor the Brillouin data. Note that in both cases the frequency
ation centers. There is no systematic variation with fre-s too high to see thex process at the temperatures of the
guency; one rather has the impression that the differencaseasurement.

stem from the different sample preparation of these seven We conclude thaf(V) does indeed increase aboVg,
measurements. The line in Fig. 3 represents the fit,0F) as postulated above on the basis of the sum rulé(g), Eq.

to these mechanical data. It is seen thgV) rises towards (15), and on the basis of the temperature dependence of the
low barriers, as one would expect from the soft-potential Eqa process. The rise dfy(V) aboveT, can be characterized
(43). But the fit line falls below the soft-potential expectation by the linear relation E¢(31) with as=5=1 for the neutron
already at rather low barriers, similar to observations in otherata andes=8=3 for the Brillouin data(in the latter case,
glasses® In fact, spectral hole burning experimeiftde-  the large error is due to the small number of points and the
tween 4 and 80 K on six glasses including polystyrene reinsecurity of the value af,), within experimental error the
vealed a f(V)~V Y2behavior rather than the same temperature coefficient for both sets of data.
f(V)~V ™ Y4expectation of the soft-potential EG3). Figure 6 showd 4(V) for polystyrene over the whole bar-

Figure 4 compares the same fit to the evaluation ofier range, together with the results of a torsion pendulum
Raman® and neutroff data in terms of Eq(41). In both  measurement at 1 Hz up @,28 an ultrasonic measurement
cases, the data had to be adapted by an appropriate multipjust below T, (Ref. 37 and the neutron result up fbg.35
cation factor. In the neutron case, this multiplication factorThe shaded area represefit§V); the a« peak above 1 eV
turned out to be a factor of 1.6 smaller than the one calcuwill be discussed in the next subsection.
lated from Eq.(44) and the soft-potential fit parameters of  Note the slight rise of (V) towards thex peak. Together
polystyrene'® One can rationalize this difference in terms of with the cutoff of the secondary relaxation by thepeak,

a slightly larger jump distance of the protons in the low-this appears as a small secondary relaxation peak just below
barrier relaxational jumps; details will be given in a forth- the glass transition. In the literatuté? the first secondary
coming publication combining time-of-flight and back- relaxation peak which one finds beloW, has the name
scattering data of polystyrerie. Johari-Goldstein or sloy# relaxation. There are many cases

The good agreement between data points and the mavhere it is much more pronounced than in polystyréhe.
chanical data fit line in Fig. 4 corroborates the earlier
conclusion® of a temperature independei{V) in the glass
phase of polystyrene. Note that the earlier conclusion did not polystyrene i
stem from a comparison of Raman and mechanical data, but
rather from a comparison of Raman data at three different
temperatures, namely 100, 200, and 300 K. The two different
ways to check the temperature behaviof giV) in the glass
phase provide the same result.

This temperature independence, however, no longer holds "'o,. -
in the undercooled liquid phase, above the glass temperature o W eemecrrecnoocestARRERIT
of 372 K of polystyrene. Figure 5 shows neutfoand lon- 00 02 0'4, 0,'6 08 10 12
gitudinal sound-wave damping data from the Brillouin barrier height V' (V)
techniqué® above Ty. In order to relate to the preceding  Fig, 6. Secondary barrier distribution functiég(V) calculated
figures, f(V) is again plotted against the barrier height  from literature mechanical damping and neutron data of amorphous
This implies that one sees the onset of the increadg(M) polystyrene up to the glass transition. The peak at the end shows the
with increasing temperature at different values\ofn the  Gaussianf (V) describing thea-process at the glass temperature
two techniques, at 0.064 eV for the neutrons and at 0.163 eY. For references see text.

5 T T T T T

o 1Hz
A 25MHz

O neutrons
— fit

f(V) (1/eV)

secondary relaxaction b
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4 - T T T T T T - 2.5 T T T T

vitreous silica

©

& —

S 373.8K S

2 polystyrene =

=1 o Plazek+O'Rourke | |

fit
0 L I T T I . ; > 3 4
0 1 2 3 4 5
logt(s) barrier height V (eV)

FIG. 7. Creep data of the process in polystyrene at the glass FIG. 8. The barrier distribution function of vitreous silica, to-
transition (for references see téxttogether with a fit in terms of ~9€ther with torsion pendulum and Brillouin damping data. For ref-
f(V). erences see text.

C. Polystyrene: Glass transition gether with an excellent agreement of the shape of the func-
tion from mechanical data with the one from Raman data.

full width at half maximuma., of f (V) and the weightv., . Of the many low-barrier mechanical data in the literature,

. e include here merely one of the Brillouin damping experi-
Ige dlea;;[:]eervtvzsl)_g)s QiLéEBTt;?n (tleor;\p:anrat(;Jr:jeerlnS) epﬁ;\?eentthel‘e\{n:ents at 35 GH2! The range of higher barriers is covered

corresponding relaxation time at 100 s, and let us choose %’ a torsion pendulum measurentérand a mHz experiment

) . ST : the glass transition itseélf. Figure 8 shows the barrier
Gaussian for the primary barrier distribution fu_nctlb,ﬂV). distribution function fitting these data over the whole range.
If one knows f4(V) from measurements in the glass

phasew, can be calculated from the sum rule E80). In Again, it turns out to be possible to fit the relaxation in
the case of polystyrene, one finas, = 0.54 for the fit func- terms of a Gaussian for the primary barrier distribution func-

tion in Fig. 6 tion f (V), ascribing the slow rise of the damping towards
The width A,=0.107 eV, the glass temperatuk, the glass transition to secondary relaxatigre shaded area

. . in Fig. 8. Note that in the silica case the assignment of
=372 K and the coefficients= 6.9+ 0.1 was fitted to creep ; N
datd® of polystyrene with a molecular weight of 600000 secondary and primary relaxation is by no means as clear as

4 ; , in the preceding polystyrene case; by choosing a Gaussian
g/mol, data which are also treated in Ferry’s btoknd g)r £ (V) one enforces the existence of a large Johari-

which atre st?]ovx{nf}n_tﬁg%. 7. The fit reg”:&iﬁ_ issgnégdltuina oldstein-like secondary relaxation peak just below the glass
parameter the infinite frequency modu ’ aal  ansition. But it is not a peak, but rather a rise towards

373.8 K. Together with the low-temperature data and thehigher barriers cut off by the glass transition

known density \{ariation of polystyrene with temperattfte, Figure 9 shows the fit of the glass transition dStaal-
one deduces a Gneisenl"y= 3.8 for G in polystyrene. With culated WithT.= 1460 K G=31 GPaw . =0.55 andA
this value, one can also calculagefor higher temperatures. _n5ea oy, ﬁi one takes’ the vaIu‘E\g—lI'Oa: 856 K and its
T.he creep functlo@(t) IS obtained by first calcylatmgV) rather large error bars from the shift factors determinetf in,
via Eq. (22), the viscosity from Eq(19) and finally J(t) one calculatesr,= 6+ 4 from Eq.(33).

from Eq. (17). It is interesting to compare vitreous silica to a sodium

As seen in Fig. 7, one can describe the temperature shig-- oai ;
. - . ilicate glass, NgD:2Si0,, which has a much lower glass
of the @ process with an appropriate risefq{V) aboveT. temperagtureTg=733 K%nd is much more fragif3, w?[h

The sum rule Eq(30) forces a temperature shift &f,(T),
which in turn provides the experimentally observed shift fac-
tors towards higher temperatures.

The scheme works quite well up to three decades in com- 25} vitreous silica T

The a process is characterized by the positgg(T), the

pliance; for still higher compliances, one gets into the pla- 2l . G Ml i
teau regime from the chain entanglem&hiyhich is beyond g T=1449K p e
the present considerations. 9 151 model fit | ]
9 10} 1
D. Vitreous silica and sodium silicate © 5

Vitreous silica is the case for which the Gilroy-Phillips
idea! was originally developed. The compatibility between 0
mechanical relaxation around 20 K and inelastic neutron
scattering at room temperature was demonstrated seven years
later® A very recent Raman experiméhshowed the tem- FIG. 9. Dynamical mechanical data of vitreous silica at the glass
perature independence &f(V) up to room temperature, to- transition, together with the model fisee text

log(w) (s1)
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4 T T T T TABLE I. Model parameters for the process.
sl NaZO: 2 S|02 | Substance Polystyrene Sio Na,0:2Si0,
< Ty (K) 372 1460 733
2, G(T,) (GPa 1.69 31 19
§ W, 0.54 0.54 0.39
= ; A, (eV) 0.107 0.263 0.092
as 6.9-0.1 64 13+1.5
0 o THC o B W H T LT
0.0 0.5 1.0 1.5 2.0 _ _ _
barrier height V (6V) rglaxatlopal shear response'e.q'uals the elastic one..The situa-
tion reminds one of the definition of the Maxwell timg,
FIG. 10. The barrier distribution function of ¥@:2Si0;, to- = 2,/G, the time when the flow response equals the elastic
gether with torsion pendulum data. For references see text. one. Thus one could think of a generalized Maxwell criterion

for the onset of the flow process, namely when the shear
Tyq—To=267 K. Figure 10 shows the barrier distribution response by secondary relaxation is the same as the elastic
function, together with torsion pendulum ddtat 0.4 Hz.  shear response. Intuitively, this is plausible: the time at
The a-peak region is again fitted to the mHz d&tsshown  which a macroscopic shear stress for a given strain decays to
in Fig. 11, with G=19 GPa, w,=0.39, and A, half its initial value should correspond to the lifetime of the

=0.092 eV. The shift factof$ requireas=13+1.5. microscopic shear pattern of the glass former, because the
microscopic stresses will be expected to decay on the same
IV. RESULTS AND DISCUSSION time scale as the macroscopic ones. But a decay of the mi-
croscopic stresses necessarily implies a coupling between
A. Results for the flow process different relaxation centers in the glass. Thus one would

The preceding section showed for all three examples &ave to go beyond the simple idea of uncoupled relaxation
good fit of thea relaxation in terms of a narrow Gaussian centers to understand the flow procé&ss.
primary barrier distribution function, together with a bigger In all three cases, the width,, is relatively narrow, less
or smaller contribution of the secondary relaxation. The conthan one tenth of the barriéf,(Tg) itself, in the third case
tribution of the secondary relaxation at tlaeprocess was even less than the twentieth part.
biggest in the strong glass former silica and smallest in the Finally, the coefficientx for the temperature rise of the
very fragile case of polystyrene. In all three cases, excellentecondary barrier distribution functidiy(V) aboveTy, re-
fits of the time or frequency dependence of #eprocess |ated to the fragility of the glass former, is not so very dif-
could be obtainedsee Figs. 7, 9, and L1Simultaneously, ferent for the three cases. There is a factor of two between
the temperature dependence of the shift factorsrfocould  sjlica and the silicate glass, but taking the differences in the
be described accurately by the temperature slepef the  gjass temperature into account, one sees that the relative rise

rise of the secondary relaxation abolgin Eq. (31). per Kelvin is the same for the two glasses, admittedly within
Tgblz ) corr]nplles th;_ fit parameters for theprocess de-  |arge error bars. The difference is ratherfiggV) itself: ob-
termined in the preceding section. viously, relaxing entities form much more easily and with

. In all three cases, the relative weigh, of the a process 1, ;o jower barriers in the multiply broken network of the

is not very far from 1/2. Ther process seems to occur when g m silicate glass than in the continuous random network

the secondary relaxations reduce the shear modulus to aboi gjjica making the glass temperature a factor of two lower.

half its infinite frequency value, i.e., when the secondary The large difference in fragility between silica and poly-
styrene is not so much due to a differencexin but rather in

15 ' ' ' ' ' the productvfy(V) at T, (see Figs. 6 and)8which is about

Na_O: 2SiO 0.3 in polystyrene and about 2.5 in silica. This product enters

2 2 into Eq. (33) for the Vogel-Fulcher temperatuig,. In this
10F T=728K o wme ] ] view, a substance is fragile when it has a low density of
. G ! secondary relaxing entities at the relaxation time of the flow
model it process. Naturally, the fast rise of the number of secondary
Sr ] relaxing entities abovéy remains a necessary condition.

The coefficientags=6.9=0.1 for polystyrene in Table I,
obtained from the temperature dependence of the shift fac-
T S e— o 7 > tors (see Fig. 7, agrees reasonably well with the values

log(e) (1) =5_tl and ¢g=8=*3 detgrmlned from neutron and Bril-
louin data abovel, (see Fig. %. It need not be exactly the

FIG. 11. Dynamical mechanical data of }&2SiO, at the same, because the coefficiesmj could still depend on the
glass transition, together with the model(fee text barrier heightv.

G, G" (GPa)
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B. Discussion context, it would be interesting to evaluate glasses with a
nore pronounced Johari-Goldstein peak, to see how well the
ncept works in those cases.

Independent of the choice of a specific function for the

Here is the proper place to remind the reader that with al
the presented equations and fits, the glass transition is n&P

y q much more convenient than the old one if one wants to com-

bharr:jer distribution function. Itis a dklfferelnt way tO.IOOkd"_if:c are different temperatures. It does not only allow for a strin-
the data, an encouragement to seek explanations in a diff€ent check of the Arrhenius behavior in the glass phase, but
ent direction, complementary to attempts to understand th

. Sy , also holds the promise to provide a deeper understanding
glass trgngmon from the I|qg|d slld‘é,because it starts from ¢ the glass transition riddié® As shown in Sec. Il E, the
a description of the relaxation in the glass phase. But thgetching of the flow process is quantitatively related to the
present work does neither explain the fast rise of the secongyidth of the a-peak. More important, the Vogel-Fulcher be-
ary relaxation abovdy, nor does it supply a quantitative havior is an inherent feature of the generic case of a constant
explanation why the shear modulus breaks down completelgecondary barrier distribution function, provided it has a con-
when it is halved by the secondary relaxation. It merely helpstant temperature rise. But one can as well understand
to quantify and to visualize these experimental facts. deviations®®! from the Vogel-Fulcher behavior in terms of
The concept of the barrier distribution function is basedmaxima and minima of the secondary barrier distribution
on the idea of independent thermally activated relaxatiorfunction. In particular, one must expect deviations from a
processes in disordered surroundings. As long as this idegingle Vogel-Fulcher law whe¥ ,(T) sweeps through a sec-
applies without any restriction, one should find aondary relaxation peak, as one indeed obset¥es.
temperature-independent barrier distribution function, as one
does i_nd_eed in the glass phase of polystyrene ar_1d silica. The V. SUMMARY AND CONCLUSIONS
guantitative comparison of measurements at different tem-
peratures and frequencies with the equations of Sec. 11 C en- The Gilroy-Phillips modeéf* for secondary relaxation in
ables a much more stringent check of the Arrhenius concer@llasses, based on the Arrhenius-Krarfigrture of ther-
than a mere Arrhenius temperature shift of a broad relaxatiomally activated jumps over energy barriers, has been ex-
peak with frequency-2 From the few such stringent checks teénded to describe the flow proce@imary ora process
reported so far, it is already clear that the concept does ndthe proper treatment of uncoupled thermally activated relax-
always work perfectly well in the glass phase. In BPA-PCation events in d|§0rdgreq sqrroundln.gs yields a temperature-
(amorphous bisphenol A polycarbonatanother amorphous mdep.endent barrier distribution functidV). The tempera-
polymer, there is Raman eviderifdor an increase of the ture independence holds as long as one has a constant

secondary barrier distribution functioiy(V) with tempera- nu_mber of |r_1deper_1dent relaxatl_on centers. The function has
; - . to integrate into 1 in order to bring the shear modulus down

ture belowTy, even though they-relaxation peak shift is : ;
erfectly Arrhenius-liké” There seem to be more such © Z€r0s & Very convenient sum rule. As it turns out, one can
P §‘8¥I'h' ) ¢ tﬁ tio ling f | ~ use the formalism to describe any kind of relaxation, admit-
cases.” This IS yet another question calling for a closer In'ting a temperature dependence of the barrier distribution
vestigation. function. Thus one can separate the trivial Arrhenius tem-

The outcome of the fits of the flow process in terms of theperature dependence from nontrivial temperature changes of

primary barrier distribution functiofi,(V) shows once more  he relaxation.

the collectivity of the flow process. These are clearly not The relaxation below the glass temperatlige where the
independent thermally activated relaxation processes; Otheé‘ynamics is restricted to local back-and-forth jumps, should
wiseV,, would not shift with temperature. There has been ame describable in terms of a temperature-independent barrier
attempt® to explain the temperature dependenc¥fT) in  distribution functior{in some cases like polystyrene, CKal
terms of a proportionality taG(T) (“flow by shoving”).  mixed calcium-potassium nitrate glassand silica®*’ it
However, as pointed out in Sec. Il C, one finds a@isen  works; in others it does ntft*?], but the flow process is most
I'y=3.8 for G(T) in polystyrene. This is a factor of seven certainly of a different kind. Therefore one has to postulate a
too weak to explain the temperature shift\6f(T). secondary barrier distribution functidg(V) for the second-

In any case, the description of the flow process in terms ofiry relaxation, and an additional primary barrier distribution
f.(V) in principle does not prejudice anything. One can al-functionf (V) for the flow process. This additional primary
ways return fromf (V) to the conventional descriptiéhin  function shifts its maximum to lower values with increasing
terms ofH(7) via Eq. (11). What might be questionable is temperature and serves simultaneously as a relatively sharp
the specific subdivision into primary and secondary relax-cutoff for the secondary relaxation. This property supplies a
ation. Here, it was decided to fit the primary barrier distribu-quantitative basis for the puzzling relation between the fra-
tion function f (V) with a Gaussian. On the basis of the gility and the fast rise of the picosecond process akiqgv.é9
data, this choice can be only justified for polystyrene; in thelt explains the unusual temperature dependence of the flow
other two cases, one could choose differently. The concluprocess in terms of the temperature rise of the secondary
sion that the shear modulus is reduced to about half its infirelaxation, and might even shed some light on the detailed
nite frequency value by the secondary relaxation alongemperature dependence of the flow process in specific
would then no longer be valid for these two cases. In thissubstance®—>?
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Reformulating the classical rheological equatiéhex-  sonably well with the fast rise seen in neutron and Brillouin
perimental literature data in polystyrene, vitreous silica and &xperiments.
sodium silicate glass could be fitted in terms of the barrier The findings suggest a rapid change of the sampled en-
distribution functions. The results corroborate the earlierergy landscape abovgy, the system visiting regions with
conclusion® of a temperature-independent secondary barriemore and more minima and saddle points as the temperature
distribution function in the glass phase of polystyrene, butises, thus also explaining the entropy crisis at the Kauzmann
show a strong increase of the secondary relaxation with inlemperature. This does not really answer the central ques-

creasing temperature aboVg. Taking the flow process as a tions around the glass transition, but focuses the attention on
fwo points:(i) what is the possible mechanism of formation

Gaussian barrier distribution function, the fits show the onse fani . b £ d | . i ith
of the flow process more or less at the point where the se@! @n Increasing number of secondary relaxation entities wit

ondary relaxation reduces the shear modulus to half its infilncreasing temperature gboﬂ'eg. (i) Why does the f.IOW
nite frequency value. This was not only found in polystyrene process set in when the integrated secondary relaxa}tlonal re-
but in the two other cases as well. It remains to be See’ﬁponse to an external shear stress equals the elastic one?

whether such a ger_1era|ized Maxwell criterion for the onset ACKNOWLEDGMENTS

of the flow process is a general property of glass formers. In

polystyrene, the temperature coefficient of the fast rise of Helpful discussions with A. Wischnewski, E. W. Fischer,
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