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Mechanical relaxation in glasses and at the glass transition
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~Received 18 August 2000; published 14 February 2001!

The Gilroy-Phillips model of relaxational jumps in asymmetric double-well potentials, developed for the
Arrhenius-type secondary relaxations of the glass phase, is extended to a formal description of the breakdown
of the shear modulus at the glass transition, thea process. The extension requires the introduction of two
separate parts of the barrier distribution functionf (V), with a different temperature behavior of primary and
secondary parts, respectively. The time-temperature scaling of thea process, together with a sum rule for the
whole barrier distribution function, implies a strong rise of the integrated secondary relaxation with increasing
temperature above the glass transition. Thus one gets a quantitative relation between the fragility of the glass
former and the fast rise of the picosecond process observed in neutron and Raman scattering. The formalism is
applied to literature data of polystyrene, vitreous silica and a sodium silicate glass. In the glass phase of
polystyrene, one finds a temperature-independent secondary barrier distribution function, in agreement with an
earlier Raman result from the literature. Above the glass transition, the secondary barrier distribution function
increases with temperature as predicted. The findings allow for an interpretation of the fragility and the entropy
crisis at the glass transition.
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I. INTRODUCTION

Relaxation in glasses, sometimes also called secon
relaxation to distinguish it from the primary relaxation at t
glass transition, is generally believed1–3 to be well described
in terms of the Arrhenius-Kramers picture,4 with a relaxation
time tV given by the Arrhenius relation

tV5t0eV/kBT, ~1!

wheret0 is a microscopic time of the order of 10213 sec-
onds, V is the energy of the barrier between two ener
minima of the system, andT is the temperature.

In contrast, the primary relaxation ora-process, the onse
of the flow process at the glass transition temperatureTg and
above, seems to follow a much steeper law5,6

ta5t0eA/(T2T0), ~2!

whereA andT0 are constants with the dimension of a tem
perature. This is the well-known empirical Vogel-Fulche
Tammann~VFT! or Williams-Landel-Ferry~WLF! equation.
T0, the Vogel-Fulcher temperature, is smaller thanTg ; the
closer it lies toTg , the more fragile is the glass former.

Since the Arrhenius law has a sound microsco
background4 and the VFT or WLF equation has not, it seem
reasonable to build a joint quantitative description on
former, bearing in mind the physical difference of the tw
processes. This is the intention of the present paper.

In glasses, one has to reckon with a whole distribution
relaxational jumps, not only over different potential barr
heights, but also between energy minima of different ene
Thus one has to extend the classical Arrhenius-Kram
treatment4 of a thermally activated relaxation process in
symmetric double-well potential to deal with a broad dist
bution of barrier heights and asymmetries. A distribution
the barrier heights was considered by Fro¨hlich,7 but only for
symmetric potentials. An asymmetric multiminimum situ
0163-1829/2001/63~10!/104203~13!/$15.00 63 1042
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tion was solved by Hoffman and Pfeiffer.8 But none of these
early attempts dealt simultaneously with a broad distribut
in both quantities, the barrier height, and the asymmetry
the wells. The necessity of such a double distribution w
recognized in the tunneling model9 for the two-level states
below 1 K in 1972. The tunneling model was a major brea
through; in the same year, Pollak and Pike10 applied the
double distribution concept to classical relaxation in order
explain the ac conductivity of glasses. Nine years later, G
roy and Phillips11 extended the scheme to a general desc
tion of mechanical and dielectric relaxation processes
glasses at higher temperatures. Also, they drew a par
between mechanical relaxation data and the quasielastic
of the Raman scattering. At the end of the same decade
soft-potential model postulated a relation between the tun
ing states and the low barrier classical relaxation processe
glasses~an excellent review of the soft-potential model h
been given by Parshin12!. Nevertheless, up to now only a few
checks of these postulates for dynamical mechanical,11,13–15

Raman11,16,17 and neutron18 data have been reported in th
literature.

The present paper begins in Sec. II with a discussion
the Gilroy-Phillips model, and a derivation of its connectio
to rheology. It turns out that one can define a barrier dis
bution functionf (V) to describe the mechanical shear rela
ation at different temperatures and frequencies. The inte
of this barrier distribution function over all barrier heightsV
must equal 1 to bring the shear modulus down to zero
order to include the flow process into the same scheme,
separatesf (V) into two parts,f s(V) and f a(V). The first of
these describes the secondary relaxations in the glass p
the second describes thea process in the undercooled liquid
respectively. As will be seen, the sum rule for the total b
rier distribution function supplies a quantitative basis for A
gell’s conjecture19 of a relation between the fragility and th
rise of the fast picosecond process above the glass trans
©2001 The American Physical Society03-1
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U. BUCHENAU PHYSICAL REVIEW B 63 104203
The low-barrier part off s(V) determines the relaxationa
part of neutron and Raman scattering. The correspond
equations are derived.

Section III applies the equations to determinef (V) from
literature data for amorphous polystyrene, vitreous silica,
a sodium silicate glass. From the results, one gets an imp
sion as to whether one gets the same secondary barrier
tribution function from different methods, in particular if on
compares the high-frequency neutron, Raman, and Brillo
scattering results with the low-frequency torsion pendul
or creep data. Furthermore, one gets a feeling for the am
of reduction of the shear modulus by the secondary re
ation processes in the glass phase. As we will see, the
ings suggest a generalized Maxwell criterion for the onse
the glass transition, namely that the flow begins when
shear response from the secondary relaxation equals the
tic one. Section IV compiles and discusses these results
their possible significance for our view of the glass tran
tion. Summary and conclusions are given in Sec. V.

II. THE GILROY-PHILLIPS MODEL

A. The asymmetric double-well potential

Let us denote the shear strain bye, the shear stress bys
and the~infinite frequency! shear modulus byG. G will gen-
erally depend on the temperatureT.

The structural relaxation is taken to be a superposition
independent Debye relaxation centers in asymmetric dou
well potentials with two minima, as shown in Fig. 1. Th
energy of the left minimum is2D/2 and the energy of the
right minimum is1D/2. The height of the barrier isV.

The interaction between the shear strain and the De
relaxation center is described by the change of the asym
try under the influence of the strain. The interaction is ch
acterized by the coupling parameterg, leading to an asym-
metry D1ge of the relaxation in the strained glass.g must
be considered to depend both onV andD.

The free energyF of the relaxation center reads

F52kBT lnF2 coshS D1ge

2kBT D G , ~3!

which has the second derivative with respect to the sh
distortione

FIG. 1. Asymmetric double-well potential with barrier heightV
and asymmetryD as a function of a generalized coordinate.
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4kBT cosh2~D/2kBT!
. ~4!

The second derivative determines the contribution of t
specific relaxing entity to the difference between the sh
moduli at infinite and zero frequency. The equation sho
that the main influence on the shear modulus is due to re
ation in potentials with asymmetries smaller thankBT; for
larger asymmetries the influence decreases rapidly bec
of the square of the hyperbolic cosine in the denominato

B. The barrier distribution function f „V…

We want to calculate the frequency dependence of
shear modulus under the assumption of slowly varying d
tribution functions in the parametersV andD. In detail, we
assume a number density of relaxing entitiesn(V,D) and a
coupling constantg(V,D) which are both approximately
constant if eitherV or D is varied by an amount of the orde
of the thermal energykBT.

Under this assumption, it is safe to neglect as well
influence of the asymmetry on the relaxation time. We
sume the relaxation timetV to be given by the Arrhenius Eq
~1!.

We then integrate over the asymmetryD to obtain the
stepdG between the shear moduli at infinite and zero f
quency from all relaxation centers with barrier heights b
tweenV andV1dV

dG5dVE
2`

` g2n~V,D!dD

4kBT cosh2~D/2kBT!
. ~5!

Since one has only contributions in the near neighborhoo
D50, wheren(V,D)'n(V,0), and since

E
2`

` dD

cosh2~D/2kBT!
54kBT, ~6!

one finds

dG5g2n~V,0!dV. ~7!

This is different from a single relaxation in a symmetric p
tential, where the step in the modulus is inversely prop
tional to the temperature. The physical reason for this diff
ence is clear: As the temperature rises, relaxation cen
with higher and higher asymmetry begin to contribute to
step in the modulus. This is an important difference betwe
relaxation in crystals and relaxation in disordered matter

The temperature-independent step in the modulus is
termined by the barrier distribution functionf (V), defined by

f ~V!5
g2n~V,0!

G
. ~8!

This parameter combination can be argued to remain in
pendent of temperature, even ifG varies with temperature
considering the relaxing entity as a small misfit region in
elastic medium,20 a misfit region which is able to change th
3-2
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MECHANICAL RELAXATION IN GLASSES AND AT THE . . . PHYSICAL REVIEW B63 104203
sign of the misfit by jumping over the barrier. Here, ho
ever, this argument will not be given in detail.

The frequency dependence of the complex shear mod
at the frequencyv and the temperatureT reads

G8~v,T!

G
5

Ge

G
1E

0

`

f ~V!
v2tV

2dV

11v2tV
2

~9!

G9~v,T!

G
5E

0

`

f ~V!
vtVdV

11v2tV
2

, ~10!

wheretV is a function ofV by the Arrhenius relation Eq.~1!,
andGe is the zero frequency modulus after the decay of
the relaxations in the system.

These two equations describe the real and the imagin
part of the frequency-dependent shear modulus at all
quencies and temperatures. As long as one can reckon w
temperature-independent number of uncoupled relaxa
centers, the barrier distribution functionf (V) remains tem-
perature independent.

But Eqs.~9! and~10! have a much higher potential than
simple description of uncoupled relaxation centers in dis
dered matter. If one allows for a temperature dependenc
the barrier distribution functionf (V), one can describe an
relaxational behavior. In particular, it is possible to obtain
unified picture of the relaxational properties of the glass a
the high-viscosity flow of the undercooled liquid. This is th
central point of the present paper.

As shown in the next subsection, one can rewrite the c
ventional rheological expressions21 in terms of f (V). The
advantage of the choice off (V) lies in the possibility to
distinguish the trivial Arrhenius temperature depende
from other, nontrivial temperature changes. These nontri
temperature changes will then reflect in a temperature de
dence off (V).

C. Rheological equations in terms off „V…

Comparing the two expressions, Eqs.~9! and ~10!, to
those in the textbooks, for instance the one on polymers
Ferry21 @Chap. 3, Eqs.~23! and ~24!#, one finds the relation
between the rheological relaxation functionH(t) and the
barrier distribution functionf (V)

H~t0eV/kBT!5H~tV!5GkBT f~V!. ~11!

With this equation, one can rewrite all the exact and
proximate rheological relations21 in terms of f (V). To do
this, one first has to define a convenient equivalent func
l (V) to the conventional rheological functionL(t), which is
needed whenever one wants to calculate a compliance

L~t0eV/kBT!5L~tV!5
kBTl~V!

G
. ~12!

In the following, the most important equations of chap
3 of Ferry’s book21 are translated into the Gilroy-Phillip
notation. Ferry’s Eq.~19! for the time-dependent modulu
G(t) reads
10420
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G~ t !5Ge1E
2`

`

H~t!e2t/td ln t ~13!

and translates into

G~ t !5Ge1GE
0

`

f ~V!e2t/tVdV. ~14!

For a viscoelastic liquid, the zero frequency modulusGe
50, so one must have

E
0

`

f ~V!dV51. ~15!

This is the sum rule for the barrier distribution functio
f (V). It has important consequences for the connection
tween primary and secondary relaxation, as discussed in
next subsection.

Next, there is Ferry’s Eq.~20! for the compliance

J~ t !5
1

G
1E

2`

`

L~t!~12e2t/t!d ln t1
t

h0
, ~16!

whereh0 is the viscosity, which translates into

J~ t !5
1

G F11E
0

`

l ~V!~12e2t/tV!dVG1
t

h0
. ~17!

The viscosityh0 can be calculated from Ferry’s Eq.~28!

h05E
2`

`

tH~t!d ln t, ~18!

which translates into

h05GE
0

`

tVf ~V!dV. ~19!

Ferry’s Eqs.~21! and~22!, the transformation fromH(t)
to L(t) and back, read

L5
H

FGe2E
2`

` H~u!

t/u21
d ln uG2

1p2H2

~20!

and

H5
L

F 1

G
1E

2`

` L~u!

12u/t
d ln u2

t

h0
G2

1p2L2

. ~21!

They translate into

l ~V!5
f ~V!

FGe

G
2I f~V!G2

1@pkBT f~V!#2

~22!

with
3-3
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I f~V!5E
0

` f ~E!dE

exp@~V2E!/kBT#21
~23!

and

f ~V!5
l ~V!

F12
tVG

h0
1I l~V!G2

1@pkBTl~V!#2

~24!

with

I l~V!5E
0

` l ~E!dE

12exp@~E2V!/kBT#
. ~25!

With these exact equations, one can calculate the
chanical response for any type of shear experiment fo
given barrier distribution functionf (V). The reverse, the de
termination of f (V) from experimental data, is more diffi
cult, because the exact equations are integral equations.
ertheless, one can start to determine a first approximatio
f (V) from measurements ofG8 andG9 using the crude ap
proximations

G8

G
512E

0

kBT ln(1/vt0)

f ~V!dV ~26!

and

f @kBT ln~1/vt0!#5
2

p

G9

GkBT
. ~27!

D. Primary and secondary relaxation

It is quite clear that one needs to distinguish second
and primary processes, because their physical mechanis
different. Thus one has to distinguish betweenf s(V), the
secondary barrier distribution function of the second
Arrhenius relaxation, andf a(V), the primary barrier distri-
bution function for the primarya process or flow proces
~see Fig. 2!.

For many glass formers, in particular polymeric ones21

Ha(t/ta) is independent of the temperature. This is t
time-temperature scaling of thea process, sometimes als

FIG. 2. Secondary barrier distribution functionf s(V) ~the
shaded area!, together with the cutoff by thea-relaxation peak
~schematic!.
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denoted as thermorheological simplicity. Since the fac
GkBT in Eq. ~11! betweenH(t) and f (V) varies only
weakly with temperature, this implies that the primary ba
rier distribution functionf a(V) is an essentially temperature
independent function ofV2Va(T), where Va(T) denotes
the maximum of this strongly peaked function. From t
Vogel-Fulcher law Eq.~2!, one expects the temperature d
pendence

Va~T!5Va~Tg!
T~Tg2T0!

Tg~T2T0!
, ~28!

showing the divergence of the fictive Arrhenius barrier of t
flow process towards the Vogel-Fulcher temperatureT0.

If time-temperature scaling holds, the weightwa of thea
process, given by

wa5E
0

`

f a~V!dV ~29!

should be temperature independent. In the comparison to
periment, we will see thatwa tends to be close to 1/2.

What does this imply for the secondary relaxations? T
a process is also an upper cutoff for the secondary re
ation; at the end of the process, the long-time shear mod
is zero. If a secondary relaxation barrier is too high, t
relaxing entity will flow away before it has a chance to jum
Therefore there is a steep cutoff for the secondary bar
distribution functionf s(V) at Va(T). According to the sum
rule Eq.~15!

E
0

Va(T)

f s~V!dV512wa5const'
1

2
. ~30!

With this sum rule, the decrease ofVa(T) with increasing
temperature implies that the secondary barrier distribut
function f s(V) must increasewith increasing temperature
This increase will be stronger for more fragile glass forme
Such a connection between the fragility and the rise of
fast process aboveTg has been indeed postulate
empirically;19 here we will be able to quantify this connec
tion.

The increase off s(V) above the glass temperature can
characterized to first order by

f s~V!5 f s~V,Tg!F11as~V!
T2Tg

Tg
G . ~31!

One can define an average temperature coefficientās by

ās5
1

12wa
E

0

Va(Tg)

as~V! f s~V!dV. ~32!

Differentiating the sum rule Eq.~30! for f s(V) with re-
spect to the temperature, calculating the derivative ofVa(T)
with respect to temperature from Eq.~28! and using Eq.~32!,
one finds the relation between the fragility and the aver
rise of the secondary relaxation
3-4
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T0

Tg2T0
5

ās~12wa!

Va~Tg! f s@Va~Tg!#
. ~33!

This relation will become clearer in the next subsectio
where the simplest possible case of a constant secon
barrier distribution function is discussed.

E. The generic casef s„V…Äconst

The deep implications of the Gilroy-Phillips formulatio
of the a-process are more clearly seen in the simplest p
sible case, shown in Fig. 2. Let us assumef s(V)5const and
as(V)5const. If the rise off s(V) with temperature is strictly
linear, Eqs.~30! and ~31! imply

Va~T!5
Va~Tg!Tg

Tg1as~T2Tg!
, ~34!

which is not exactly equal, but very close to the empiric
Vogel-Fulcher-Tammann or Williams-Landel-Ferry Eq.~2!,
with the Vogel-Fulcher temperatureT0 given by

T05TgS 12
1

as
D . ~35!

It is obvious how this comes about: atT0, the density of
secondary processes extrapolates to zero. Thus one h
proceed to infinitely high barriers to satisfy the sum ru
~30!. This gives a different view on the puzzling fragility o
glass formers: the abnormal temperature dependence
consequence of the time-temperature scaling of thea pro-
cess, and of a strictly linear rise of the number of second
relaxing units with temperature.

The decrease of the secondary barrier distribution fu
tion f s(V) implies a decrease of the number of minima of t
glass former. Thus one gets an equality22 between the Vogel-
Fulcher and the Kauzmann temperatureTK , the latter being
defined as the temperature where the excess entropy o
glass former over the corresponding crystalline system
trapolates to zero. If there are no minima between which
glass former can jump, there is no excess entropy, the
Adam-Gibbs idea.23

Note that Eq.~35! for the Vogel-Fulcher or Kauzman
temperature holds not only in the generic case of a cons
secondary barrier distribution function, but for anyf s(V), as
long as one can reckon with the same strictly linear temp
ture rise of the function for allV.

To complete the discussion of the glass transit
peculiarities6 in the Gilroy-Phillips picture, let us look at th
stretching of thea process, empirically described by th
Kohlrausch equation

G~ t !5Gaexp@2~ t/ta!b#, ~36!

where the Kohlrausch exponentb lies5 between 0.3 and 0.7
and Ga is a free parameter. The smallerb is, the more
stretched is thea relaxation, and the stronger it deviate
from a simple exponential decay.

In order to calculateb, the definition of the primary bar
rier distribution functionf a(V) must be more specific. Let u
10420
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assume a Gaussian centered atVa with weight wa51/2 and
with a full width at half maximum denoted byDa . Calcu-
lating G(t) from Eq. ~13!, one then finds fairly Kohlrausch
like curves for the simple generic case of Fig. 2, at leas
the time region of the a process, with Ga
'0.55 . . .0.75 G andta about 80% of the Arrhenius valu
for Va . There is a deviation of the Kohlrausch fits from th
calculated curves, but it is so small that it would be hard
see in an experiment. It turns out that the ratioDa /Va deter-
mines the Kohlrausch exponentb; if it is 0.05, thenb'0.7;
for the ratio 0.1,b'0.5 and for the ratio 0.2,b'0.3. So the
broaderf a(V), the more stretched the relaxation, not une
pected.

Note this is merely a change of description. The Gilro
Phillips formulation does not really explain the puzzling fe
tures of the glass transition, the fragility, the entropy cri
and the stretching. But it supplies a description which allo
to look for another explanation. We will return to this poi
in the discussion.

In order to measureas(V) in the picosecond range b
scattering methods, one still needs the equations for
neutron- and Raman-scattering functions in terms of the b
rier distribution function. These will be derived in the ne
subsection, the last part of the description of the Gilro
Phillips model.

F. Neutron and Raman scattering

One can carry out the same integrations over asymme
and barrier heights as in the shear relaxation for the neut
scattering cross section. Let us begin with a single asymm
ric double-well potential, let us assume that atomj has a
coherent scattering lengthbj and an incoherent scatterin
cross sections j , and that it jumps from the position2dW j /2
to dW j /2, with the origin of the coordinate system in th
middle between the two.

For the incoherent inelastic scattering in the one-phon
approximation,24 it suffices to calculate the mean-square d
placements. These can be obtained from the Boltzmann
cupation factors of the two minima of the potential. Th
average position vectorrW j of atom j is given by

^rW j&52
dW j

2
tanh

D

2kBT
~37!

and its average square is

^rW j
2&5

dj
2

4
, ~38!

so the mean-square displacement contribution of the re
ation to atomj reads

^uj
2&5^rW j

2&2^rW j&
25

dj
2

4 cosh2D/2kBT
. ~39!
3-5
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In this expression, we recognize the same inverse cosh2 as in
Eq. ~4!, which can be again integrated over the asymmetr
if the jump eigenvector stays essentially the same for
different local asymmetries.

The scattering contribution is a Lorentzian with a h
width at half maximum inv given by the inverse relaxatio
time, determined by the barrier height according to
Arrhenius Eq.~1!. The weight of the contribution inS(Q,v)
is determined by the number of relaxations and the weigh
sum of the jump vectors

d25
( js jdj

2

s̄
. ~40!

The sum is over all atoms in the sample, ands̄ is their
average incoherent cross section.

Integrating over the barrier heights as well, one gets
equation for the incoherent scattering

Sinc~Q,v!5vanS kBT ln
1

vt0
,0D kB

2T2Q2d2

6v
, ~41!

whereva is the atomic volume, and the prefactor 1/3 ste
from the directional average. This equation is again an
proximation, which holds iff (V) does not vary strongly with
V. The coherent scattering is obtained replacingd2 by
dcoh

2 (Q) with

dcoh
2 ~Q!5

3

b̄2Q2 K U(j
bje

iQW RW jQW dW jU2L , ~42!

whereRW j is the equilibrium position of atomj, b̄ is the av-
erage scattering length and the brackets indicate the orie
tional averaging over the structure factor of the relaxati
Even after this averaging, the structure factor need not s
a simpleQ2 behavior like the incoherent one, but does s
contain information on the jump vectors.18

The scattering measurements do not givef (V), but rather
the productn(V,0)d2. If one wants the proportionality facto
between those two quantities, one needs additional infor
tion about the relaxing entities. However, there is an eleg
and general way to obtain this proportionality factor for ve
low barriers from the soft-potential model,12 which describes
the tunneling states and the low-barrier classical relaxatio
similar modes with a double-well potential distribution. It
not very difficult to derive an equation for the barrier dist
bution functionf (V) as defined here in terms of the defin
tions in this paper. One finds

f sp~V!5
2C

W3/4V1/4
, ~43!

whereC ~in principle Cl for longitudinal waves andCt for
transverse waves! is a dimensionless constant of the order
1024, which can be taken from acoustic attenuation meas
ments below 4 K, andW is the crossover energy betwee
tunneling and vibrational modes, which can be measu
from the crossover regions of the specific heat or the ther
conductivity at low temperatures.15 The soft-potential mode
10420
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has a fourth parameterPs for the density of these modes
With this parameter, the relation betweenn(V,0)d2 and the
secondary barrier distribution functionf s(V) reads

van~V,0!d2
2W2rCt

\2Ps

5 f s~V!, ~44!

wherer is the mass density. For glasses consisting of m
than one sort of atoms, the relation might fail if strongly a
weakly scattering atoms have different jump widths. B
with this relation, one can determine the secondary bar
distribution functionf s(V) from neutron scattering measure
ments without adaptable parameter, using soft-potential
rameters from the literature.15

The Raman scattering from relaxations in glasses is no
easily calculated. However, experience25,26 shows that neu-
tron and Raman scattering give the same spectra as lon
one stays at frequencies well below the boson peak. T
one can use the Raman spectra as one uses incoheren
tron scattering data, with the disadvantage of an additio
general adaptable parameter for the overall intensity. T
advantage of the Raman technique is a much higher inten
and a much better resolution, allowing one to assess m
lower frequencies.

III. COMPARISON TO EXPERIMENT

A. Values from different techniques

Let us first consider which barriers one samples with
given technique. Creep measurements cover the time ra
from 0.1 s to several weeks. This is a measurement in
time domain, applied mostly to measurements of thea pro-
cess at the glass transition, which does not obey the Arrh
ius relation Eq.~1!. Nevertheless, one can formally calcula
barrier heights of the order of 27 to 41kBTg , around 1 eV
for polystyrene (Tg5373 K) and around 4 eV for vitreou
silica (Tg51473 K).

The torsion pendulum method with frequencies aroun
Hz sees relaxations around 0.1 s. In terms of the Arrhen
relation witht0510213 s, this implies a barrier height of 50
meV at 20 K. In order to see barriers of 1 eV, one need
temperature of about 400 K, close to the glass temperatur
polystyrene.

Proceeding to higher frequencies, one has vibrating r
measurements around 10 kHz, ultrasonic data in the M
range, light scattering Brillouin data around 10 GHz an
finally, Raman and neutron data between a few GHz an
few hundred GHz. For the latter two, the lower limit hold
only for the Raman technique; if one looks for the we
quasielastic scattering from secondary relaxations, the n
tron technique in practice has a lower limit of 100 GHz. T
upper limit of about 300 GHz is given by the crossover fro
relaxational to vibrational scattering.16,35 Thus one sees only
the uppermost frequency band of the relaxational scatte
with neutrons. Nevertheless, neutrons play an important r
because they serve to validate the Raman scattering dat

For the fast relaxation at 200 GHz, the relaxation time
of the order of a picosecond, only ten times longer than
microscopic time scale of the vibrational motion. Th
3-6
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MECHANICAL RELAXATION IN GLASSES AND AT THE . . . PHYSICAL REVIEW B63 104203
Arrhenius relation translates this again into a barrier of
meV at 300 K. Thus neutron and Raman measuremen
room temperature sample the same relaxations that one
in a torsion pendulum measurement around 20 K. If one
still in the glass phase at room temperature, one can
check the temperature independence of the barrier distr
tion function f (V) @in that case,f (V)5 f s(V)] by a compari-
son between a torsion pendulum and a neutron or Ra
experiment. Naturally, the same can be done by a comp
son of a torsion pendulum and a Brillouin scattering expe
ment.

If one wants to determine the barrier distribution functi
from the mechanical damping at different frequencies, o
often has to compare measurements of different elastic
stants. A torsion pendulum measurement provides imm
ately the real and imaginary part of the shear modulusG.
The vibrating reed technique measures Youngs moduluY.
In terms of the bulk modulusB, the inverse of the compress
ibility, Youngs modulus reads

Y5
9BG

3B1G
. ~45!

Since that quotient is close to 3G, it is a reasonable approxi
mation to identify the tand5Y8/Y9 results of the vibrating
reed technique~in that technique often denoted asQ21

5tand) with that of the shear modulusG. The real part of
the shear modulusG8 can then be estimated to beY8/3, or
calculated accurately from the above equation if the b
modulus is known.

A less safe connection is to longitudinal sound measu
ments, which determine the real and imaginary part of
elastic constantc11, sometimes also denoted as the modu
M. In terms ofB andG, c11 reads

c115B1
4

3
G. ~46!

Both contributions are of comparable size. Therefore, if o
wants to determine tand for the shear modulus from longi
tudinal sound attenuation data, one has to know the rela
size of the two damping contributions from compression a
from shear. Here it should be noted that the mechan
damping at very low temperatures is quite similar for tra
verse and longitudinal phonons in many glasses.27 As long as
this holds, one can take tand from the inverse mean-fre
path l 21 of the longitudinal sound wave according to

tand5
v l 21

v
, ~47!

wherev is the sound velocity. In this equation, the mean-fr
path is defined as the distance where the sound-waveenergy
decreases by 1/e.

It is better to use data from transverse sound waves; th
the damping relates directly to the shear. However, in p
ticular for light scattering Brillouin experiments, it is muc
easier to determine the damping for the longitudinal wav
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which provide a much clearer signal. That damping is of
given in terms of the half width at half maximumG of the
Brillouin line. Then

tand5
2G

v
, ~48!

wherev is the frequency of the Brillouin line.
Finally, one problem of the determination off (V) is to

know G at the temperature of the measurement; usually
has onlyG8 andG9. A way out of this problem is to start a
low temperatures, whereG'G8, determinef (V) via Eq.
~27!, and then pursueG8/G to higher temperatures via Eq
~26!. This way was followed throughout in this paper,
least as far as the determination of the secondary relaxa
was concerned~the primary relaxation is too sharp to use t
crude approximation of Eq.~27!; there, one has to use th
exact equations!.

One can try to check theG(T) values by Brillouin light
scattering measurements of the transverse sound waves,
ally at frequencies around 10 GHz. Even there, one ha
reckon with some influence from the low-barrier part of t
relaxations; this is, however, only a small correction whi
can be easily done if one hasf (V), using Eq.~26!.

B. Polystyrene: Secondary relaxation

We begin the comparison to experiment with a heav
studied glass former, atactic polystyrene, one of the m
fragile substances,5 an amorphous polymer where one c
rely on a large number of experimental data, both at l
temperatures and at the glass transition.

The low-temperature data were evaluated for tempe
tures above 10 K; at that limiting temperature, one can be
to reckon with the validity of the Kramers picture.4 Figure 3
shows a compilation of many mechanical low-temperat
data: torsion pendulum data at 1 Hz,28 at 6 Hz,29 vibrating
reed data at 3, 34, and 87 kHz,30–32and Brillouin damping of
longitudinal sound waves at 10 GHz.33 The data cannot be
said to coincide perfectly in this Gilroy-Phillips evaluatio
nevertheless, the agreement is fair enough to support

FIG. 3. Secondary barrier distribution functionf s(V) calculated
from literature data of the mechanical damping of amorphous p
styrene in the glass phase at different frequencies. For refere
see text. The line is a fit; the same fit is also shown in Figs. 4, 5,
6.
3-7
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concept of a constant number density of uncoupled re
ation centers. There is no systematic variation with f
quency; one rather has the impression that the differen
stem from the different sample preparation of these se
measurements. The line in Fig. 3 represents the fit off s(V)
to these mechanical data. It is seen thatf s(V) rises towards
low barriers, as one would expect from the soft-potential
~43!. But the fit line falls below the soft-potential expectatio
already at rather low barriers, similar to observations in ot
glasses.15 In fact, spectral hole burning experiments34 be-
tween 4 and 80 K on six glasses including polystyrene
vealed a f (V);V21/2-behavior rather than the
f (V);V21/4-expectation of the soft-potential Eq.~43!.

Figure 4 compares the same fit to the evaluation
Raman16 and neutron35 data in terms of Eq.~41!. In both
cases, the data had to be adapted by an appropriate mu
cation factor. In the neutron case, this multiplication fac
turned out to be a factor of 1.6 smaller than the one ca
lated from Eq.~44! and the soft-potential fit parameters
polystyrene.15 One can rationalize this difference in terms
a slightly larger jump distance of the protons in the lo
barrier relaxational jumps; details will be given in a fort
coming publication combining time-of-flight and bac
scattering data of polystyrene.35

The good agreement between data points and the
chanical data fit line in Fig. 4 corroborates the earl
conclusion16 of a temperature independentf s(V) in the glass
phase of polystyrene. Note that the earlier conclusion did
stem from a comparison of Raman and mechanical data
rather from a comparison of Raman data at three differ
temperatures, namely 100, 200, and 300 K. The two differ
ways to check the temperature behavior off s(V) in the glass
phase provide the same result.

This temperature independence, however, no longer h
in the undercooled liquid phase, above the glass tempera
of 372 K of polystyrene. Figure 5 shows neutron35 and lon-
gitudinal sound-wave damping data from the Brillou
technique36 aboveTg . In order to relate to the precedin
figures, f (V) is again plotted against the barrier heightV.
This implies that one sees the onset of the increase off s(V)
with increasing temperature at different values ofV in the
two techniques, at 0.064 eV for the neutrons and at 0.163

FIG. 4. Secondary barrier distribution functionf s(V) calculated
from literature data of neutron and Raman scattering from am
phous polystyrene in the glass phase. For references see text.
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for the Brillouin data. Note that in both cases the frequen
is too high to see thea process at the temperatures of t
measurement.

We conclude thatf s(V) does indeed increase aboveTg ,
as postulated above on the basis of the sum rule forf (V), Eq.
~15!, and on the basis of the temperature dependence o
a process. The rise off s(V) aboveTg can be characterized
by the linear relation Eq.~31! with as5561 for the neutron
data andas5863 for the Brillouin data~in the latter case,
the large error is due to the small number of points and
insecurity of the value atTg), within experimental error the
same temperature coefficient for both sets of data.

Figure 6 showsf s(V) for polystyrene over the whole bar
rier range, together with the results of a torsion pendul
measurement at 1 Hz up toTg ,28 an ultrasonic measuremen
just belowTg ~Ref. 37! and the neutron result up toTg .35

The shaded area representsf s(V); the a peak above 1 eV
will be discussed in the next subsection.

Note the slight rise off s(V) towards thea peak. Together
with the cutoff of the secondary relaxation by thea-peak,
this appears as a small secondary relaxation peak just b
the glass transition. In the literature,6,19 the first secondary
relaxation peak which one finds belowTg has the name
Johari-Goldstein or slow-b relaxation. There are many case
where it is much more pronounced than in polystyrene.38

r-
FIG. 5. Secondary barrier distribution functionf s(V) calculated

from literature data of neutron and Brillouin data of amorpho
polystyrene, both in the glass phase and above the glass tempe
Tg . For references see text.

FIG. 6. Secondary barrier distribution functionf s(V) calculated
from literature mechanical damping and neutron data of amorph
polystyrene up to the glass transition. The peak at the end show
Gaussianf a(V) describing thea-process at the glass temperatu
Tg . For references see text.
3-8
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C. Polystyrene: Glass transition

Thea process is characterized by the positionVa(T), the
full width at half maximumDa of f a(V) and the weightwa .
The latter two should be temperature independent.
us define Va(Tg)515kBTgln(10) in order to have the
corresponding relaxation time at 100 s, and let us choo
Gaussian for the primary barrier distribution functionf a(V).

If one knows f s(V) from measurements in the glas
phase,wa can be calculated from the sum rule Eq.~30!. In
the case of polystyrene, one findswa50.54 for the fit func-
tion in Fig. 6.

The width Da50.107 eV, the glass temperatureTg
5372 K and the coefficientas56.960.1 was fitted to creep
data39 of polystyrene with a molecular weight of 600 00
g/mol, data which are also treated in Ferry’s book21 and
which are shown in Fig. 7. The fit requires as an additio
parameter the infinite frequency modulusG51.69 GPa at
373.8 K. Together with the low-temperature data and
known density variation of polystyrene with temperature40

one deduces a Gru¨neisenGg53.8 for G in polystyrene. With
this value, one can also calculateG for higher temperatures
The creep functionJ(t) is obtained by first calculatingl (V)
via Eq. ~22!, the viscosity from Eq.~19! and finally J(t)
from Eq. ~17!.

As seen in Fig. 7, one can describe the temperature
of thea process with an appropriate rise off s(V) aboveTg .
The sum rule Eq.~30! forces a temperature shift ofVa(T),
which in turn provides the experimentally observed shift fa
tors towards higher temperatures.

The scheme works quite well up to three decades in c
pliance; for still higher compliances, one gets into the p
teau regime from the chain entanglement,21 which is beyond
the present considerations.

D. Vitreous silica and sodium silicate

Vitreous silica is the case for which the Gilroy-Phillip
idea11 was originally developed. The compatibility betwee
mechanical relaxation around 20 K and inelastic neut
scattering at room temperature was demonstrated seven
later.18 A very recent Raman experiment17 showed the tem-
perature independence off s(V) up to room temperature, to

FIG. 7. Creep data of thea process in polystyrene at the gla
transition ~for references see text!, together with a fit in terms of
f (V).
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gether with an excellent agreement of the shape of the fu
tion from mechanical data with the one from Raman data

Of the many low-barrier mechanical data in the literatu
we include here merely one of the Brillouin damping expe
ments at 35 GHz.41 The range of higher barriers is covere
by a torsion pendulum measurement42 and a mHz experimen
at the glass transition itself.43 Figure 8 shows the barrie
distribution function fitting these data over the whole rang
Again, it turns out to be possible to fit thea relaxation in
terms of a Gaussian for the primary barrier distribution fun
tion f a(V), ascribing the slow rise of the damping towar
the glass transition to secondary relaxation~the shaded area
in Fig. 8!. Note that in the silica case the assignment
secondary and primary relaxation is by no means as clea
in the preceding polystyrene case; by choosing a Gaus
for f a(V) one enforces the existence of a large Joha
Goldstein-like secondary relaxation peak just below the gl
transition. But it is not a peak, but rather a rise towar
higher barriers cut off by the glass transition.

Figure 9 shows the fit of the glass transition data,43 cal-
culated withTg51460 K, G531 GPa,wa50.55, andDa
50.263 eV. If one takes the valueTg2T05850 K and its
rather large error bars from the shift factors determined in43

one calculatesas5664 from Eq.~33!.
It is interesting to compare vitreous silica to a sodiu

silicate glass, Na2O:2SiO2, which has a much lower glas
temperatureTg5733 K and is much more fragile,43 with

FIG. 8. The barrier distribution function of vitreous silica, to
gether with torsion pendulum and Brillouin damping data. For r
erences see text.

FIG. 9. Dynamical mechanical data of vitreous silica at the gl
transition, together with the model fit~see text!.
3-9
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U. BUCHENAU PHYSICAL REVIEW B 63 104203
Tg2T05267 K. Figure 10 shows the barrier distributio
function, together with torsion pendulum data44 at 0.4 Hz.
The a-peak region is again fitted to the mHz data,43 shown
in Fig. 11, with G519 GPa, wa50.39, and Da
50.092 eV. The shift factors43 requireas51361.5.

IV. RESULTS AND DISCUSSION

A. Results for the flow process

The preceding section showed for all three example
good fit of thea relaxation in terms of a narrow Gaussia
primary barrier distribution function, together with a bigg
or smaller contribution of the secondary relaxation. The c
tribution of the secondary relaxation at thea process was
biggest in the strong glass former silica and smallest in
very fragile case of polystyrene. In all three cases, excel
fits of the time or frequency dependence of thea process
could be obtained~see Figs. 7, 9, and 11!. Simultaneously,
the temperature dependence of the shift factors forta could
be described accurately by the temperature slopeas of the
rise of the secondary relaxation aboveTg in Eq. ~31!.

Table I compiles the fit parameters for thea process de-
termined in the preceding section.

In all three cases, the relative weightwa of thea process
is not very far from 1/2. Thea process seems to occur whe
the secondary relaxations reduce the shear modulus to a
half its infinite frequency value, i.e., when the second

FIG. 10. The barrier distribution function of Na2O:2SiO2, to-
gether with torsion pendulum data. For references see text.

FIG. 11. Dynamical mechanical data of Na2O:2SiO2 at the
glass transition, together with the model fit~see text!.
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relaxational shear response equals the elastic one. The s
tion reminds one of the definition of the Maxwell timetM

5h0 /G, the time when the flow response equals the ela
one. Thus one could think of a generalized Maxwell criteri
for the onset of the flow process, namely when the sh
response by secondary relaxation is the same as the e
shear response. Intuitively, this is plausible: the time
which a macroscopic shear stress for a given strain decay
half its initial value should correspond to the lifetime of th
microscopic shear pattern of the glass former, because
microscopic stresses will be expected to decay on the s
time scale as the macroscopic ones. But a decay of the
croscopic stresses necessarily implies a coupling betw
different relaxation centers in the glass. Thus one wo
have to go beyond the simple idea of uncoupled relaxa
centers to understand the flow process.45

In all three cases, the widthDa is relatively narrow, less
than one tenth of the barrierVa(Tg) itself, in the third case
even less than the twentieth part.

Finally, the coefficientas for the temperature rise of th
secondary barrier distribution functionf s(V) aboveTg , re-
lated to the fragility of the glass former, is not so very d
ferent for the three cases. There is a factor of two betw
silica and the silicate glass, but taking the differences in
glass temperature into account, one sees that the relative
per Kelvin is the same for the two glasses, admittedly with
large error bars. The difference is rather inf s(V) itself; ob-
viously, relaxing entities form much more easily and wi
much lower barriers in the multiply broken network of th
sodium silicate glass than in the continuous random netw
of silica, making the glass temperature a factor of two low

The large difference in fragility between silica and pol
styrene is not so much due to a difference inas , but rather in
the productV fs(V) at Tg ~see Figs. 6 and 8!, which is about
0.3 in polystyrene and about 2.5 in silica. This product ent
into Eq. ~33! for the Vogel-Fulcher temperatureT0. In this
view, a substance is fragile when it has a low density
secondary relaxing entities at the relaxation time of the fl
process. Naturally, the fast rise of the number of second
relaxing entities aboveTg remains a necessary condition.

The coefficientas56.960.1 for polystyrene in Table I,
obtained from the temperature dependence of the shift
tors ~see Fig. 7!, agrees reasonably well with the valuesas
5561 and as5863 determined from neutron and Bril
louin data aboveTg ~see Fig. 5!. It need not be exactly the
same, because the coefficientas could still depend on the
barrier heightV.

TABLE I. Model parameters for thea process.

Substance Polystyrene SiO2 Na2O:2SiO2

Tg ~K! 372 1460 733
G(Tg) ~GPa! 1.69 31 19
wa 0.54 0.54 0.39
Da ~eV! 0.107 0.263 0.092
as 6.960.1 664 1361.5
3-10
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B. Discussion

Here is the proper place to remind the reader that with
the presented equations and fits, the glass transition is
really explained. The Gilroy-Phillips formalism supplie
only a reformulation of well-known equations in terms of
barrier distribution function. It is a different way to look a
the data, an encouragement to seek explanations in a d
ent direction, complementary to attempts to understand
glass transition from the liquid side,46 because it starts from
a description of the relaxation in the glass phase. But
present work does neither explain the fast rise of the seco
ary relaxation aboveTg , nor does it supply a quantitativ
explanation why the shear modulus breaks down comple
when it is halved by the secondary relaxation. It merely he
to quantify and to visualize these experimental facts.

The concept of the barrier distribution function is bas
on the idea of independent thermally activated relaxat
processes in disordered surroundings. As long as this
applies without any restriction, one should find
temperature-independent barrier distribution function, as
does indeed in the glass phase of polystyrene and silica.
quantitative comparison of measurements at different t
peratures and frequencies with the equations of Sec. II C
ables a much more stringent check of the Arrhenius conc
than a mere Arrhenius temperature shift of a broad relaxa
peak with frequency.1–3 From the few such stringent check
reported so far, it is already clear that the concept does
always work perfectly well in the glass phase. In BPA-P
~amorphous bisphenol A polycarbonate!, another amorphous
polymer, there is Raman evidence16 for an increase of the
secondary barrier distribution functionf s(V) with tempera-
ture belowTg , even though theg-relaxation peak shift is
perfectly Arrhenius-like.47 There seem to be more suc
cases.48 This is yet another question calling for a closer i
vestigation.

The outcome of the fits of the flow process in terms of
primary barrier distribution functionf a(V) shows once more
the collectivity of the flow process. These are clearly n
independent thermally activated relaxation processes; ot
wiseVa would not shift with temperature. There has been
attempt49 to explain the temperature dependence ofVa(T) in
terms of a proportionality toG(T) ~‘‘flow by shoving’’ !.
However, as pointed out in Sec. III C, one finds a Gru¨neisen
Gg53.8 for G(T) in polystyrene. This is a factor of seve
too weak to explain the temperature shift ofVa(T).

In any case, the description of the flow process in term
f a(V) in principle does not prejudice anything. One can
ways return fromf a(V) to the conventional description21 in
terms ofH(t) via Eq. ~11!. What might be questionable i
the specific subdivision into primary and secondary rel
ation. Here, it was decided to fit the primary barrier distrib
tion function f a(V) with a Gaussian. On the basis of th
data, this choice can be only justified for polystyrene; in
other two cases, one could choose differently. The con
sion that the shear modulus is reduced to about half its
nite frequency value by the secondary relaxation alo
would then no longer be valid for these two cases. In t
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context, it would be interesting to evaluate glasses with
more pronounced Johari-Goldstein peak, to see how well
concept works in those cases.

Independent of the choice of a specific function for t
primary barrier distribution function, the new description
much more convenient than the old one if one wants to co
pare different temperatures. It does not only allow for a str
gent check of the Arrhenius behavior in the glass phase,
it also holds the promise to provide a deeper understand
of the glass transition riddles.6,5 As shown in Sec. II E, the
stretching of the flow process is quantitatively related to
width of thea-peak. More important, the Vogel-Fulcher b
havior is an inherent feature of the generic case of a cons
secondary barrier distribution function, provided it has a co
stant temperature rise. But one can as well underst
deviations50,51 from the Vogel-Fulcher behavior in terms o
maxima and minima of the secondary barrier distributi
function. In particular, one must expect deviations from
single Vogel-Fulcher law whenVa(T) sweeps through a sec
ondary relaxation peak, as one indeed observes.52

V. SUMMARY AND CONCLUSIONS

The Gilroy-Phillips model11 for secondary relaxation in
glasses, based on the Arrhenius-Kramers4 picture of ther-
mally activated jumps over energy barriers, has been
tended to describe the flow process~primary ora process!.
The proper treatment of uncoupled thermally activated rel
ation events in disordered surroundings yields a temperat
independent barrier distribution functionf (V). The tempera-
ture independence holds as long as one has a con
number of independent relaxation centers. The function
to integrate into 1 in order to bring the shear modulus do
to zero, a very convenient sum rule. As it turns out, one c
use the formalism to describe any kind of relaxation, adm
ting a temperature dependence of the barrier distribu
function. Thus one can separate the trivial Arrhenius te
perature dependence from nontrivial temperature change
the relaxation.

The relaxation below the glass temperatureTg , where the
dynamics is restricted to local back-and-forth jumps, sho
be describable in terms of a temperature-independent ba
distribution function@in some cases like polystyrene, CKN~a
mixed calcium-potassium nitrate glass!, and silica16,17 it
works; in others it does not16,48#, but the flow process is mos
certainly of a different kind. Therefore one has to postulat
secondary barrier distribution functionf s(V) for the second-
ary relaxation, and an additional primary barrier distributi
function f a(V) for the flow process. This additional primar
function shifts its maximum to lower values with increasin
temperature and serves simultaneously as a relatively s
cutoff for the secondary relaxation. This property supplie
quantitative basis for the puzzling relation between the f
gility and the fast rise of the picosecond process aboveTg .19

It explains the unusual temperature dependence of the
process in terms of the temperature rise of the second
relaxation, and might even shed some light on the deta
temperature dependence of the flow process in spe
substances.50–52
3-11
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Reformulating the classical rheological equations,21 ex-
perimental literature data in polystyrene, vitreous silica an
sodium silicate glass could be fitted in terms of the bar
distribution functions. The results corroborate the ear
conclusion16 of a temperature-independent secondary bar
distribution function in the glass phase of polystyrene,
show a strong increase of the secondary relaxation with
creasing temperature aboveTg . Taking the flow process as
Gaussian barrier distribution function, the fits show the on
of the flow process more or less at the point where the s
ondary relaxation reduces the shear modulus to half its
nite frequency value. This was not only found in polystyre
but in the two other cases as well. It remains to be s
whether such a generalized Maxwell criterion for the on
of the flow process is a general property of glass formers
polystyrene, the temperature coefficient of the fast rise
f s(V) aboveTg calculated from the fragility coincided rea
m.
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sonably well with the fast rise seen in neutron and Brillou
experiments.

The findings suggest a rapid change of the sampled
ergy landscape aboveTg , the system visiting regions with
more and more minima and saddle points as the tempera
rises, thus also explaining the entropy crisis at the Kauzm
temperature. This does not really answer the central qu
tions around the glass transition, but focuses the attention
two points:~i! what is the possible mechanism of formatio
of an increasing number of secondary relaxation entities w
increasing temperature aboveTg? ~ii ! Why does the flow
process set in when the integrated secondary relaxationa
sponse to an external shear stress equals the elastic on
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