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Energy Landscapes in Random Systems, Driven Interfaces, and Wetting

E. T. Seppälä and M. J. Alava
Helsinki University of Technology, Laboratory of Physics,

P.O. Box 1100, FIN-02015 HUT, Finland
(Received 11 August 1999)

We discuss the zero-temperature susceptibility of elastic manifolds with quenched randomness. It
diverges with system size due to low-lying local minima. The distribution of energy gaps is deduced to
be constant in the limit of vanishing gaps by comparing numerics with a probabilistic argument. The
typical manifold response arises from a level-crossing phenomenon and implies that wetting in random
systems begins with a discrete transition. The associated “jump field” scales as �h� � L25�3 and L22.2

for �1 1 1� and �2 1 1� dimensional manifolds with random bond disorder.

PACS numbers: 75.50.Lk, 05.70.Np, 68.45.Gd, 74.60.Ge

The physics of systems with quenched disorder is re-
lated to the energy landscape. The free energy is at low
temperatures governed by zero temperature effects, which
in turn are ruled by the scaling of the disorder-dependent
contribution. Random magnets, as spin glasses and ran-
dom field systems, flux line lattices in superconductors,
and granular materials are examples of physical systems in
which frustration and disorder play an important role. Dis-
order may dominate also in nonequilibrium conditions, like
driven systems (domain walls in magnets, flux lines in su-
perconducting materials). In that case temperature-driven
dynamics (creep, aging) and the external drive change the
system from one metastable state to another [1,2].

A lot of information about energy landscapes is con-
tained in how the number of local energy minima and the
typical scale of their energy differences scale with system
size, L [3]. This can be interpreted in a geometric fashion
in that one compares the energy difference of two states
with their overlap in terms of the spin configuration (as
for magnets). In spin glasses, an intense debate still goes
on as to whether in the thermodynamic limit the thermo-
dynamic state is trivial (“droplet” picture [4]) or not (as in
the “replica symmetry breaking” picture [5]).

Consider now the problem of the energetics of D di-
mensional elastic manifolds in random media [6–9], of
which the best-known case is a directed polymer (DP)
in a random medium with D � 1, often called a “baby
spin glass” [10]. For these systems the interface energy
is proportional to the area, and the sample-to-sample en-
ergy fluctuations scale with the exponent u (u � 1�3 for a
DP in d � D 1 1 � 2 embedding dimensions). The ge-
ometry is often self-affine, characterized by a roughness
exponent z (2�3, when d � 2). In the simplest energy
landscape, the valleys and excitations are separated by en-
ergy gaps proportional to lu , where l is the length scale of
the perturbation.

Here, the susceptibility of elastic manifolds is studied
in the presence of weak fields numerically and by scaling
arguments. By investigating each sample separately, we
explore the changes in the energy landscape with applied
fields. These lead to discrete “jumps” in the physical con-

figuration. As a consequence, scaling arguments of wet-
ting in random systems do not work in the limit of weak
fields if the original interface-to-wall distance is much
larger than the interface roughness [11]. With precondi-
tioned systems we obtain the detailed probability distribu-
tion of the energy differences (gaps) between local minima
and the global one. We find that the average interface be-
havior can be explained with scaling arguments, but the
susceptibility cannot, and it is directly related to the exact
properties of the gap distribution. Thus, the detailed sta-
tistics of the landscape is important. This contradicts con-
siderations for random systems that assume well-defined
thermodynamic functions [12] and scaling arguments with
a single parameter (Lu). These findings agree with claims
that the susceptibility of a DP to thermal perturbations or
applied fields is anomalous [13–15]. The reason is that
the response to a very weak field, say applied locally at
the end point of a DP, is governed by rare samples. The
disorder-averaged response differs from the typical one
because the ground state can be almost degenerate with
a local minimum. Likewise, numerical studies of d �
�1 1 1� DP susceptibility reveal aging phenomena remi-
niscent of real spin glasses [16,17].

The continuum Hamiltonian for a D dimensional elas-
tic manifold [x is an internal coordinate and a z (scalar)
displacement]

H �
Z

dDx�G�=z�x�	2 1 Vr �x, z� 1 h�z�
 , (1)

with an elastic energy (G is the interface stiffness), and Vr

is a random pinning energy [we use a random bond correla-
tor, �Vr�x, z�Vr �x0, z0�� � 2Dd�x 2 x0�d�z 2 z0�]. h�z�
couples the interface to an external perturbation; e.g., it de-
scribes a constant magnetic field H in Ising magnets with
antiperiodic boundary conditions.

The Hamiltonian (1) describes also complete wetting
in a random system, where h�z� equals the chemical po-
tential difference of the wetting layer and the bulk phase
[11,18–20]. For h non-negligible, the wetting-inducing
external potential competes with the tendency of the inter-
face to win pinning energy. Assuming that these balance,
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the average interface-wall separation �z� becomes �z� �
h2c , c � 1

t1k , where c is the depinning exponent. t

measures the scaling of the elastic and pinning energy and
is given by t � 2�1 2 z ��z , and k is the scaling exponent
of the external field h�z� � zk (here we use k � 1). For
random bond systems t � 1 in d � 1 1 1 dimensions,
and t � 2.9 in d � 2 1 1 using the known bulk rough-
ness exponent values 2�3 and 0.41 in d � 2 and 3, respec-
tively [6,21]. In d � 2 numerical simulations in random
Ising systems indicate, in agreement, c � 0.5 [18,19].

A network flow algorithm, invented by Goldberg and
Tarjan [22], is used here for the numerical procedure.
It solves the minimum-cut–maximum-network-flow prob-
lem, and produces in polynomial time the exact ground
state energy and interface configuration given a sample
(L 3 Lz or L 3 L 3 Lz) with fixed quenched disorder.
Lz is the z-directional system size. The algorithm is con-
venient when one makes systematic perturbations to the
original problem �h � 0� [23,24]. Figure 1 illustrates the
sample-to-sample behavior, as the external field h�z� is
switched on slowly [see Eq. (1)]. At h � 0 the inter-
face is in the ground state. It has a mean wall distance
z̄0 and a width w � Lz in a system of transverse size Lz .
As the field is increased the interfaces move intermittently
with jumps to positions (z̄1, z̄2, . . . , z̄n, . . .) [25]. This cor-
responds to a first-order transition. Instead of finite-size
excitations the first change in the interface configuration is
a macroscopic jump with zero overlap between the old and
new states. The first transition point defines a jump field
h1. It assumes the role of a latent heat, and corresponds to
the landscape-dependent energy to move the interface.
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FIG. 1. Overview of two realizations of changes in mean
heights z̄ of interfaces normalized by their original (global
minimum) positions z̄0 vs applied field h for �1 1 1� dimen-
sional systems. Note the large jumps in both cases. L2 � 2002.
Jij,z [ �0, 1
 uniform distribution and Jij,x � 0.5 (random bond
disorder). The expected scenarios (bubble formation, jump to
the lower edge of the system) before and after the first moves
from global minima z0�x� to z1�x� are shown in the inset.

The two possible mechanisms are compared in the
inset of Fig. 1. Either the interface adjusts itself gradually
by forming “bubbles” or local excitations, or it jumps
completely (compare with the main figure). The scenarios
are linked to the structure of the energy landscape. If
the first excitation is localized and has the transverse
spatial extension D (l � D1�z ) [14], the energy cost scales
with Da�z and the energy win in the field scales with
h1D11�d21��z . Assuming that a � u the jump field h1 �
Dā � Du�z212�d21��z . The exponent is negative, and
thus small excitations are the more expensive ones [26].
Numerically, the fraction of jumps leading to a nonzero
overlap with the ground state decreases towards zero
slowly with L. Also, the scaling function of the interface
jump lengths approaches a constant shape. The mean
jump length (Dz1 � z̄0 2 z̄1, z̄1 , z̄0) scales extensively,
Dz1 � Lz , not with, e.g., Lz .

So, for small fields h and Lz ø Lz the sample-to-
sample fluctuations lead to a discrete (wetting) transition.
The average behavior with �z�h�� and typical interface be-
havior with z̄�h� do not coincide, since the asymptotic
h ! 0 limit is dominated by the near degeneracy of the
ground state. In the limit Lz ø Lz , there are many in-
dependent “valleys” in the energy landscape for directed
surfaces. Each of these has an energy En corresponding to
a local minimum and their energy difference to the ground
state (with E0) is expected to scale as with two indepen-
dent sets of disorder. That is En 2 E0 � Lu . This energy
difference equated with the jump energy h1LDDz1 leads
(with the choice Lz � L) to the scaling:

h1 � Lu2d � L2a . (2)

The jump field exponents are a � 5�3 and a � 2.18 in
d � 2 and d � 3 random bond systems, respectively. In
d � 3 random field interfaces have a � 5�3 (z � 2�3
and u � 2z 1 D 2 2 [7,8]). It is assumed that Dz1 � L,
since the valley energies are independent, except for the
bias caused by the field h. Figure 2 compares the expo-
nent values to numerical data with only the nonoverlapping
jumps being considered (without this pruning the same ex-
ponent is obtained asymptotically). For D � 1 a becomes
1.62 6 0.04, close to the scaling estimate of 5�3. The in-
set shows the disorder-averaged jump distance �Dz1� vs
L and shows that the interface response geometry scales
linearly with L (as discussed above). For D � 2 random
bond manifolds we obtain a � 2.2, in reasonable agree-
ment again. In the limit �zn�h�� � z̄n�h� � w � Lz (after
n jumps of sizes Dzn � z̄n21 2 z̄n) the mean-field wet-
ting theory applies, and indeed we obtain for the depinning
exponent for d � 2 c � 1�2, and for d � �2 1 1� c �
0.26, in rough accordance with the Lipowsky-Fisher [11]
prediction. In d � �2 1 1� there are deviations including
a dewetting transition for weak disorder [21] and the ex-
ponent converges very slowly (z̄0 � w � Lz at L � 104

if Lz � 50 [27]).
If the initial interface position is random, the jump sta-

tistics are an average over the initial number of available
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FIG. 2. Finite-size scaling of the average first jump field �h1�
for one dimensional DP’s. The line is the least squares fit to
data. The scaling argument gives a � 5�3. The inset shows
the average jump distance �Dz1� at the corresponding field h1
with a linear fit to data. � � is the disorder average over N �
1000 realizations for the system sizes L 3 Lz � L2 � 502 and
1002, N � 500 for L2 � 2002 4002, and N � 200 for L2 �
6002 10002. The disorder is of random bond type.

valleys (recall that the field breaks the up-and-down
symmetry, see Fig. 1). Thus, we also consider the limit in
which the initial position is set to be inside a fixed-size
window, z̄0�Lz � const. We expect that the number of
local valleys in the landscape, accessible with h . 0, has
a well-defined average (in the grand-canonical sense), and
that the relevant scaling parameter is Lz�Lz . Figure 3
shows the scaling function of the probability distribution
P�h1� obtained with this initial condition. We find the
form P�h1��h1�� � A�L�f�h1��h1��, where A depends
on the energy gap scale Lu , and f is a scaling function
with the limiting behaviors f�x� ! 1, x ! 0 and f�x� �
exp�2axb�, x . 1, b � 1.3. The distribution is constant
for small fields and has an almost exponential cutoff. The
scaling properties imply, in particular, that the disorder-
averaged susceptibility diverges. The change in magne-
tization is given by the number of interfaces that have
moved times the mean distance �Dz1�. Thus the divergence
is not xtot � L3 [12]. Figure 4 shows the average jump
field in the fixed height ensemble with varying Lz and
constant L. We have fitted the data with �h1� � L2g

z , and
the best fit is obtained by the scaling exponent g � 4�3.

Consider now the energy landscape for small h. It has
k � 1, . . . , Nz associated minima (Nz � Lz�Lz ) with the
energies Ek picked out of an associated energy gap proba-
bility distribution P̂�DEk�, where DEk � Ek 2 E0 and
E0 is the ground state energy. When h . 0, all the lo-
cal minima attain an energy of Ek 1 hDzk with respect
to the reference state with z̄0 and E0. Now we make the
assumption, analogous to the random energy model [28],
that all the gap energies DEk are independent random vari-
ables. We can now simply compute the probability for the

−4.0 −3.0 −2.0 −1.0 0.0 1.0
normalized jump field lg[h1/<h1>]

0.0

0.2

0.4

0.6

0.8

1.0

P(
h 1/

<
h 1>

)*
<

h 1>

L=100
L=200

1 2 3 4 5 6
h1/<h1>

−6

−5

−4

−3

−2

−1

ln
[P

(h
1/

<
h 1>

)*
<

h 1>
]

FIG. 3. The scaling function of the probability distribution
P�h1��h1�� 3 �h1� for the first jump field values h1 normal-
ized by their disorder average �h1� in a (10-base) semilogarith-
mic scale for the system sizes L 3 Lz � L2 � 1002 and 2002.
The inset shows the tails in the natural-log scale. The initial
global minimum position z̄0�Lz � const for all L. The number
of realizations N � 104 for both system sizes. The line is the
analytic result from Eq. (3) with a uniform distribution P̂�x�
and Nz � 20.

original ground state being stable for any h (i.e., no jump
has taken place) by the joint probability P0 that all the
Ek 1 hDzk’s are still higher than the original one with
the given h. 2≠P0�≠h gives then the probability that this
level crossing occurs at exactly h. By computing

≠P0

≠h
� 2e2s

Nz
1 s

kh�Nz
0 P̂�x� dx dk

3
Z Nz

1

P̂�kh�Nz�

1 2 s
kh�Nz

0 P̂�x� dx
dk , (3)
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FIG. 4. The disorder average of the first jump field �h1� as a
function of transverse system size Lz for the system sizes L �
100, 150, 200, 250, and 300, each with z̄0�Lz � const. The
number of realizations ranges from N � 500 for L � 300, Lz �
500 to N � 2600 for L � 200, Lz � 600. The line L2g

z , g �
4�3 is a guide to the eye.
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one can show that the only P̂ that reproduces the numeri-
cal P�h1� is a constant one, whereas all other functional
forms of P̂ fail (see Fig. 3). This P̂ is in fact exactly the
marginal one needed for the susceptibility per spin x �
limh!0�≠z̄�≠h� to diverge in the thermodynamic limit. In
particular, for a distribution P�h1� that vanishes in the
zero field limit, the susceptibility would stay finite. Us-
ing the obtained form for the probability distribution gives
x � Lu� Lz

Lz �g , where g � 1 2 z relates to the density
of valleys. This slightly disagrees with the above result
(g � 4�3) since with L � const x � Lg

z , g � 1. In the
isotropic limit L ~ Lz the extensive susceptibility simply
reads xtot � Ldx � Ld111u2z � L2D1z . In conclusion,
x (or xtot) is determined by the exact low-energy proper-
ties of P̂, or by the rare events in the low DE tail.

In summary, we have studied the coupling between the
energy landscape structure and the response of interfaces,
related, for instance, to complete wetting. A disorder aver-
aging that reflects correctly the level-crossing character of
the problem reveals that the wetting starts with a discrete
transition. Thus the randomness of the energy landscape
drives a second-order transition to a first-order one. The
jump is associated with an effective specific heat, which
can be understood in terms of scaling arguments. The sus-
ceptibility is governed by the infrequent cases with low-
lying local minima, which allows us to derive a constant
energy gap probability distribution. The results should be
relevant for other problems such as flux line lattices in su-
perconducting materials with quenched randomness [1]. It
will also be of interest to see if the energetics and the geo-
metrical character of the response can be coupled with ar-
guments concerning the energy barriers in each specific
configuration [29]. This would allow one to understand the
dynamics in the creep regime, when the interface moves
between metastable states.
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cussions. We thank the Academy of Finland for support.
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