3,198 research outputs found

    Myopia drives reckless behavior in response to over-taxation

    Get PDF

    Forced Symmetry Breaking from SO(3) to SO(2) for Rotating Waves on the Sphere

    Full text link
    We consider a small SO(2)-equivariant perturbation of a reaction-diffusion system on the sphere, which is equivariant with respect to the group SO(3) of all rigid rotations. We consider a normally hyperbolic SO(3)-group orbit of a rotating wave on the sphere that persists to a normally hyperbolic SO(2)-invariant manifold M(ϵ)M(\epsilon). We investigate the effects of this forced symmetry breaking by studying the perturbed dynamics induced on M(ϵ)M(\epsilon) by the above reaction-diffusion system. We prove that depending on the frequency vectors of the rotating waves that form the relative equilibrium SO(3)u_{0}, these rotating waves will give SO(2)-orbits of rotating waves or SO(2)-orbits of modulated rotating waves (if some transversality conditions hold). The orbital stability of these solutions is established as well. Our main tools are the orbit space reduction, Poincare map and implicit function theorem

    On the formation/dissolution of equilibrium droplets

    Full text link
    We consider liquid-vapor systems in finite volume VRdV\subset\R^d at parameter values corresponding to phase coexistence and study droplet formation due to a fixed excess δN\delta N of particles above the ambient gas density. We identify a dimensionless parameter Δ(δN)(d+1)/d/V\Delta\sim(\delta N)^{(d+1)/d}/V and a \textrm{universal} value \Deltac=\Deltac(d), and show that a droplet of the dense phase occurs whenever \Delta>\Deltac, while, for \Delta<\Deltac, the excess is entirely absorbed into the gaseous background. When the droplet first forms, it comprises a non-trivial, \textrm{universal} fraction of excess particles. Similar reasoning applies to generic two-phase systems at phase coexistence including solid/gas--where the ``droplet'' is crystalline--and polymorphic systems. A sketch of a rigorous proof for the 2D Ising lattice gas is presented; generalizations are discussed heuristically.Comment: An announcement of a forthcoming rigorous work on the 2D Ising model; to appear in Europhys. Let

    Spontaneous Breakdown of Superhydrophobicity

    Get PDF
    In some cases water droplets can completely wet micro-structured superhydrophobic surfaces. The {\it dynamics} of this rapid process is analyzed by ultra-high-speed imaging. Depending on the scales of the micro-structure, the wetting fronts propagate smoothly and circularly or -- more interestingly -- in a {\it stepwise} manner, leading to a growing {\it square-shaped} wetted area: entering a new row perpendicular to the direction of front propagation takes milliseconds, whereas once this has happened, the row itself fills in microseconds ({\it ``zipping''})Comment: Accepted for publication in Physical Review Letter

    KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages

    Get PDF
    Among the strategies adopted by glioma to successfully invade the brain parenchyma is turning the infiltrating microglia/macrophages (M/MΦ) into allies, by shifting them toward an anti-inflammatory, pro-tumor phenotype. Both glioma and infiltrating M/MΦ cells express the Ca(2+)-activated K(+) channel (KCa3.1), and the inhibition of KCa3.1 activity on glioma cells reduces tumor infiltration in the healthy brain parenchyma. We wondered whether KCa3.1 inhibition could prevent the acquisition of a pro-tumor phenotype by M/MΦ cells, thus contributing to reduce glioma development. With this aim, we studied microglia cultured in glioma-conditioned medium or treated with IL-4, as well as M/MΦ cells acutely isolated from glioma-bearing mice and from human glioma biopsies. Under these different conditions, M/MΦ were always polarized toward an anti-inflammatory state, and preventing KCa3.1 activation by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), we observed a switch toward a pro-inflammatory, antitumor phenotype. We identified FAK and PI3K/AKT as the molecular mechanisms involved in this phenotype switch, activated in sequence after KCa3.1. Anti-inflammatory M/MΦ have higher expression levels of KCa3.1 mRNA (kcnn4) that are reduced by KCa3.1 inhibition. In line with these findings, TRAM-34 treatment, in vivo, significantly reduced the size of tumors in glioma-bearing mice. Our data indicate that KCa3.1 channels are involved in the inhibitory effects exerted by the glioma microenvironment on infiltrating M/MΦ, suggesting a possible role as therapeutic targets in glioma

    Demonstration of a picosecond Bragg switch for hard x-rays in a synchrotron-based pump-probe experiment

    Get PDF
    We report a benchmark experiment that demonstrates shortening of hard x-ray pulses in a synchrotron-based optical pump - x-ray probe experiment. The pulse shortening device, a picosecond Bragg switch, reduces the temporal resolution of an incident x-ray pulse to 7.5 ps. We employ the Bragg switch to monitor propagating sound waves in nanometer-thin epitaxial films. With the experimental data we infer pulse duration, diffraction efficiency and switching contrast of the device. A detailed efficiency analysis shows, that the switch can deliver up to 1010 photons/sec in high-repetition rate synchrotron experiments

    In Conversation with Mubin Shaikh: From Salafi Jihadist to Undercover Agent inside the "Toronto 18" Terrorist Group

    Get PDF
    This interview with former undercover agent Mubin Shaikh can help academics and security practitioners understand the key role played and the challenges faced by covert human intelligence sources within domestic terrorist groups. The interview highlights the identity crisis, the personal factors, and the allure of jihadi militancy that initially drove Shaikh to join a Salafi jihadist group. It investigates Shaikh’s process of disengagement from the Salafi jihadist belief system and his rediscovery of a moderate, inclusive, and benevolent form of Islam. It explores his work as an undercover agent for the Canadian Security Intelligence Service, the Royal Canadian Mounted Police, and the Integrated National Security Enforcement Team responsible for disrupting domestic terrorist groups. The “Toronto 18” terrorist cell, the key role played by undercover agents in preventing terrorist action, and the challenges posed by entrapment are also discussed

    Temperature Dependence of Facet Ridges in Crystal Surfaces

    Full text link
    The equilibrium crystal shape of a body-centered solid-on-solid (BCSOS) model on a honeycomb lattice is studied numerically. We focus on the facet ridge endpoints (FRE). These points are equivalent to one dimensional KPZ-type growth in the exactly soluble square lattice BCSOS model. In our more general context the transfer matrix is not stochastic at the FRE points, and a more complex structure develops. We observe ridge lines sticking into the rough phase where thesurface orientation jumps inside the rounded part of the crystal. Moreover, the rough-to-faceted edges become first-order with a jump in surface orientation, between the FRE point and Pokrovsky-Talapov (PT) type critical endpoints. The latter display anisotropic scaling with exponent z=3z=3 instead of familiar PT value z=2z=2.Comment: 12 pages, 19 figure

    Ab Initio Structural Energetics of Beta-Si3N4 Surfaces

    Full text link
    Motivated by recent electron microscopy studies on the Si3N4/rare-earth oxide interfaces, the atomic and electronic structures of bare beta-Si3N4 surfaces are investigated from first principles. The equilibrium shape of a Si3N4 crystal is found to have a hexagonal cross section and a faceted dome-like base in agreement with experimental observations. The large atomic relaxations on the prismatic planes are driven by the tendency of Si to saturate its dangling bonds, which gives rise to resonant-bond configurations or planar sp^2-type bonding. We predict three bare surfaces with lower energies than the open-ring (10-10) surface observed at the interface, which indicate that non-stoichiometry and the presence of the rare-earth oxide play crucial roles in determining the termination of the Si3N4 matrix grains.Comment: 4 Pages, 4 Figures, 1 tabl
    corecore