2,184 research outputs found

    Will the real Bemisia tabaci please stand up?

    Get PDF
    Since Panayiotis Gennadius first identified the whitefly, Aleyrodes tabaci in 1889, there have been numerous revisions of the taxonomy of what has since become one of the world’s most damaging insect pests. Most of the taxonomic revisions have been based on synonymising different species under the name Bemisia tabaci. It is now considered that there is sufficient biological, behavioural and molecular genetic data to support its being a cryptic species complex composed of at least 34 morphologically indistinguishable species. The first step in revising the taxonomy of this complex involves matching the A. tabaci collected in 1889 to one of the members of the species complex using molecular genetic data. To do this we extracted and then amplified a 496 bp fragment from the 39 end of the mitochondrial DNA cytochrome oxidase one (mtCOI) gene belonging to a single whitefly taken from Gennadius’ original 1889 collection. The sequence identity of this 123 year-old specimen enabled unambiguous assignment to a single haplotype known from 13 Mediterranean locations across Greece and Tunisia. This enabled us to unambiguously assign the Gennadius A. tabaci to the member of the B. tabaci cryptic species complex known as Mediterranean or as it is commonly, but erroneously referred to, as the ‘Q-biotype’. Mediterranean is therefore the real B. tabaci. This study demonstrates the importance of matching museum syntypes with known species to assist in the delimitation of cryptic species based on the organism’s biology and molecular genetic data. This study is the first step towards the reclassification of B. tabaci which is central to an improved understanding how best to manage this globally important agricultural and horticultural insect pest complex

    Cross modal perception of body size in domestic dogs (Canis familiaris)

    Get PDF
    While the perception of size-related acoustic variation in animal vocalisations is well documented, little attention has been given to how this information might be integrated with corresponding visual information. Using a cross-modal design, we tested the ability of domestic dogs to match growls resynthesised to be typical of either a large or a small dog to size- matched models. Subjects looked at the size-matched model significantly more often and for a significantly longer duration than at the incorrect model, showing that they have the ability to relate information about body size from the acoustic domain to the appropriate visual category. Our study suggests that the perceptual and cognitive mechanisms at the basis of size assessment in mammals have a multisensory nature, and calls for further investigations of the multimodal processing of size information across animal species

    Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts

    Full text link
    The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.Comment: 13 pages, 4 figures, 1 table. Note: This paper has been accepted for publication in Nature, but is embargoed for discussion in the popular press until formal publication in Natur

    Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?

    Get PDF
    It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations

    The development of accounting in UK universities:an oral history

    Get PDF
    This article reports on the development of the accounting discipline in universities in England and Scotland from the 1960s. Drawing on the oral history narratives of six distinguished accounting scholars who played a significant role in the discipline, this article documents (1) the initial influences on the teaching of accounting in English universities, (2) the different influences on the teaching of accounting in Scottish universities and (3) the influence of US universities and their scholars on the development of academic accounting in the United Kingdom. With a focus on the second wave of accounting professoriate who followed the London School of Economics (LSE) ‘Triumvirate’ of William Baxter, Harold Edey and David Solomons, this article provides first-hand insights into the shape and spread of university accounting education at a crucial stage of its development. This, in turn, develops an understanding of the contemporary academic accounting discipline in the United Kingdom.PostprintPeer reviewe

    Body size and vocalization in primates and carnivores

    Get PDF
    A fundamental assumption in bioacoustics is that large animals tend to produce vocalizations with lower frequencies than small animals. This inverse relationship between body size and vocalization frequencies is widely considered to be foundational in animal communication, with prominent theories arguing that it played a critical role in the evolution of vocal communication, in both production and perception. A major shortcoming of these theories is that they lack a solid empirical foundation: rigorous comparisons between body size and vocalization frequencies remain scarce, particularly among mammals. We address this issue here in a study of body size and vocalization frequencies conducted across 91 mammalian species, covering most of the size range in the orders Primates (n = 50; ~0.11–120 Kg) and Carnivora (n = 41; ~0.14–250 Kg). We employed a novel procedure designed to capture spectral variability and standardize frequency measurement of vocalization data across species. The results unequivocally demonstrate strong inverse relationships between body size and vocalization frequencies in primates and carnivores, filling a long-standing gap in mammalian bioacoustics and providing an empirical foundation for theories on the adaptive function of call frequency in animal communication

    How do you say ‘hello’? Personality impressions from brief novel voices

    Get PDF
    On hearing a novel voice, listeners readily form personality impressions of that speaker. Accurate or not, these impressions are known to affect subsequent interactions; yet the underlying psychological and acoustical bases remain poorly understood. Furthermore, hitherto studies have focussed on extended speech as opposed to analysing the instantaneous impressions we obtain from first experience. In this paper, through a mass online rating experiment, 320 participants rated 64 sub-second vocal utterances of the word ‘hello’ on one of 10 personality traits. We show that: (1) personality judgements of brief utterances from unfamiliar speakers are consistent across listeners; (2) a two-dimensional ‘social voice space’ with axes mapping Valence (Trust, Likeability) and Dominance, each driven by differing combinations of vocal acoustics, adequately summarises ratings in both male and female voices; and (3) a positive combination of Valence and Dominance results in increased perceived male vocal Attractiveness, whereas perceived female vocal Attractiveness is largely controlled by increasing Valence. Results are discussed in relation to the rapid evaluation of personality and, in turn, the intent of others, as being driven by survival mechanisms via approach or avoidance behaviours. These findings provide empirical bases for predicting personality impressions from acoustical analyses of short utterances and for generating desired personality impressions in artificial voices

    In situ proliferation and differentiation of macrophages in dental pulp

    Get PDF
    The presence of macrophages in dental pulp is well known. However, whether these macrophages proliferate and differentiate in the dental pulp in situ, or whether they constantly migrate from the blood stream into the dental pulp remains unknown. We have examined and compared the development of dental pulp macrophages in an organ culture system with in vivo tooth organs to clarify the developmental mechanism of these macrophages. The first mandibular molar tooth organs from ICR mice aged between 16 days of gestation (E16) to 5 days postnatally were used for in vivo experiments. Those from E16 were cultured for up to 14 days with or without 10% fetal bovine serum. Dental pulp tissues were analyzed with immunohistochemistry to detect the macrophages and with reverse transcription and the polymerase chain reaction (RT-PCR) for the detection of factors related to macrophage development. The growth curves for the in vivo and in vitro cultured cells revealed similar numbers of F4/80-positive macrophages in the dental pulp. RT-PCR analysis indicated the constant expression of myeloid colony-stimulating factor (M-CSF) in both in-vivo- and in-vitro-cultured dental pulp tissues. Anti-M-CSF antibodies significantly inhibited the increase in the number of macrophages in the dental pulp. These results suggest that (1) most of the dental pulp macrophages proliferate and differentiate in the dental pulp without a supply of precursor cells from the blood stream, (2) M-CSF might be a candidate molecule for dental pulp macrophage development, and (3) serum factors might not directly affect the development of macrophages

    Social Complexity and Nesting Habits Are Factors in the Evolution of Antimicrobial Defences in Wasps

    Get PDF
    Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of Staphylococcus aureus. These data were then combined with phylogenetic data to provide an evolutionary context. Social species showed significantly higher (18x) antimicrobial activity than solitary species and species with paper nests showed significantly higher (11x) antimicrobial activity than those which excavated burrows. Mud-nest species showed no antimicrobial activity. Solitary, burrow-provisioning wasps diverged at more basal nodes of the phylogenetic trees, while social wasps diverged from the most recent nodes. These data suggest that antimicrobial defences may have evolved in response to ground-dwelling pathogens but the most important variable leading to increased antimicrobial strength was increase in group size and social complexity
    corecore