242 research outputs found

    A Ca(V)2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant

    Get PDF
    Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide

    Dominant-negative calcium channel suppression by truncated constructs involves a kinase implicated in the unfolded protein response

    Get PDF
    Expression of the calcium channel Ca(V)2.2 is markedly suppressed by coexpression with truncated constructs of Ca(V)2.2. Furthermore, a two-domain construct of Ca(V)2.1 mimicking an episodic ataxia-2 mutation strongly inhibited Ca(V)2.1 currents. We have now determined the specificity of this effect, identified a potential mechanism, and have shown that such constructs also inhibit endogenous calcium currents when transfected into neuronal cell lines. Suppression of calcium channel expression requires interaction between truncated and full-length channels, because there is inter-subfamily specificity. Although there is marked cross-suppression within the Ca(V)2 calcium channel family, there is no cross-suppression between Ca(V)2 and Ca(V)3 channels. The mechanism involves activation of a component of the unfolded protein response, the endoplasmic reticulum resident RNA-dependent kinase (PERK), because it is inhibited by expression of dominant-negative constructs of this kinase. Activation of PERK has been shown previously to cause translational arrest, which has the potential to result in a generalized effect on protein synthesis. In agreement with this, coexpression of the truncated domain I of Ca(V)2.2, together with full-length Ca(V)2.2, reduced the level not only of Ca(V)2.2 protein but also the coexpressed alpha2delta-2. Thapsigargin, which globally activates the unfolded protein response, very markedly suppressed Ca(V)2.2 currents and also reduced the expression level of both Ca(V)2.2 and alpha2delta-2 protein. We propose that voltage-gated calcium channels represent a class of difficult-to-fold transmembrane proteins, in this case misfolding is induced by interaction with a truncated cognate Ca(V) channel. This may represent a mechanism of pathology in episodic ataxia-2

    Ablation of α_{2}δ-1 inhibits cell-surface trafficking of endogenous N-type calcium channels in the pain pathway in vivo

    Get PDF
    The auxiliary α_{2}δ calcium channel subunits play key roles in voltage-gated calcium channel function. Independent of this, α_{2}δ-1 has also been suggested to be important for synaptogenesis. Using an epitope-tagged knockin mouse strategy, we examined the effect of α_{2}δ-1 on Ca_{V}2.2 localization in the pain pathway in vivo, where Ca_{V}2.2 is important for nociceptive transmission and α_{2}δ-1 plays a critical role in neuropathic pain. We find Ca_{V}2.2 is preferentially expressed on the plasma membrane of calcitonin gene-related peptide-positive small nociceptors. This is paralleled by strong presynaptic expression of Ca_{V}2.2 in the superficial spinal cord dorsal horn. EM-immunogold localization shows Ca_{V}2.2 predominantly in active zones of glomerular primary afferent terminals. Genetic ablation of α_{2}δ-1 abolishes Ca_{V}2.2 cell-surface expression in dorsal root ganglion neurons and dramatically reduces dorsal horn expression. There was no effect of α2δ-1 knockout on other dorsal horn pre- and postsynaptic markers, indicating the primary afferent pathways are not otherwise affected by α_{2}δ-1 ablation

    Proteolytic maturation of α 2 δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels

    Get PDF
    The auxiliary α2δ subunits of voltage-gated calcium channels are extracellular membrane-associated proteins, which are post-translationally cleaved into disulfide-linked polypeptides α2 and δ. We now show, using α2δ constructs containing artificial cleavage sites, that this processing is an essential step permitting voltage-dependent activation of plasma membrane N-type (CaV2.2) calcium channels. Indeed, uncleaved α2δ inhibits native calcium currents in mammalian neurons. By inducing acute cell-surface proteolytic cleavage of α2δ, voltage-dependent activation of channels is promoted, independent from the trafficking role of α2δ. Uncleaved α2δ does not support trafficking of CaV2.2 channel complexes into neuronal processes, and inhibits Ca2+ entry into synaptic boutons, and we can reverse this by controlled intracellular proteolytic cleavage. We propose a model whereby uncleaved α2δ subunits maintain immature calcium channels in an inhibited state. Proteolytic processing of α2δ then permits voltage-dependent activation of the channels, acting as a checkpoint allowing trafficking only of mature calcium channel complexes into neuronal processes

    Disruption of the Key Ca2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking

    Get PDF
    Voltage-gated calcium channels are exquisitely Ca2+ selective, conferred primarily by four conserved pore-loop glutamate residues contributing to the selectivity filter. There has been little previous work directly measuring whether the trafficking of calcium channels requires their ability to bind Ca2+ in the selectivity filter or to conduct Ca2+. Here, we examine trafficking of neuronal CaV2.1 and 2.2 channels with mutations in their selectivity filter and find reduced trafficking to the cell surface in cell lines. Furthermore, in hippocampal neurons, there is reduced trafficking to the somatic plasma membrane, into neurites, and to presynaptic terminals. However, the CaV2.2 selectivity filter mutants are still influenced by auxiliary α2δ subunits and, albeit to a reduced extent, by β subunits, indicating the channels are not grossly misfolded. Our results indicate that Ca2+ binding in the pore of CaV2 channels may promote their correct trafficking, in combination with auxiliary subunits. Furthermore, physiological studies utilizing selectivity filter mutant CaV channels should be interpreted with caution

    The α2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α2δ-1

    Get PDF
    Voltage-gated calcium channel auxiliary α2δ subunits are important for channel trafficking and function. Here, we compare the effects of α2δ-1 and an α2δ-like protein called Cachd1 on neuronal N-type (CaV2.2) channels, which are important in neurotransmission. Previous structural studies show the α2δ-1 VWA domain interacting with the first loop in CaV1.1 domain-I via its metal ion-dependent adhesion site (MIDAS) motif and additional Cache domain interactions. Cachd1 has a disrupted MIDAS motif. However, Cachd1 increases CaV2.2 currents substantially (although less than α2δ-1) and increases CaV2.2 cell surface expression by reducing endocytosis. Although the effects of α2δ-1 are abolished by mutation of Asp122 in CaV2.2 domain-I, which mediates interaction with its VWA domain, the Cachd1 responses are unaffected. Furthermore, Cachd1 co-immunoprecipitates with CaV2.2 and inhibits co-immunoprecipitation of α2δ-1 by CaV2.2. Cachd1 also competes with α2δ-1 for effects on trafficking. Thus, Cachd1 influences both CaV2.2 trafficking and function and can inhibit responses to α2δ-1

    Proteolytic maturation of alpha(2)delta represents a checkpoint for activation and neuronal trafficking of latent calcium channels

    Get PDF
    The auxiliary a2d subunits of voltage-gated calcium channels are extracellular membrane-associated proteins, which are post-translationally cleaved into disulfide-linked polypeptides a2 and d. We now show, using a2d constructs containing artificial cleavage sites, that this processing is an essential step permitting voltage-dependent activation of plasma membrane N-type (CaV2.2) calcium channels. Indeed, uncleaved a2d inhibits native calcium currents in mammalian neurons. By inducing acute cell-surface proteolytic cleavage of a2d, voltage-dependent activation of channels is promoted, independent from the trafficking role of a2d. Uncleaved a2d does not support trafficking of CaV2.2 channel complexes into neuronal processes, and inhibits Ca2+ entry into synaptic boutons, and we can reverse this by controlled intracellular proteolytic cleavage. We propose a model whereby uncleaved a2d subunits maintain immature calcium channels in an inhibited state. Proteolytic processing of a2d then permits voltage-dependent activation of the channels, acting as a checkpoint allowing trafficking only of mature calcium channel complexes into neuronal processes

    Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variable structure parallel mechanisms, actuated with low-cost motors with serially added elasticity (series elastic actuator - SEA), has considerable potential in rehabilitation robotics. However, reflected masses of a SEA and variable structure parallel mechanism linked with a compliant actuator result in a potentially unstable coupled mechanical oscillator, which has not been addressed in previous studies.</p> <p>Methods</p> <p>The aim of this paper was to investigate through simulation, experimentation and theoretical analysis the necessary conditions that guarantee stability and passivity of a haptic device (based on a variable structure parallel mechanism driven by SEA actuators) when in contact with a human. We have analyzed an equivalent mechanical system where a dissipative element, a mechanical damper was placed in parallel to a spring in SEA.</p> <p>Results</p> <p>The theoretical analysis yielded necessary conditions relating the damping coefficient, spring stiffness, both reflected masses, controller's gain and desired virtual impedance that needs to be fulfilled in order to obtain stable and passive behavior of the device when in contact with a human. The validity of the derived passivity conditions were confirmed in simulations and experimentally.</p> <p>Conclusions</p> <p>These results show that by properly designing variable structure parallel mechanisms actuated with SEA, versatile and affordable rehabilitation robotic devices can be conceived, which may facilitate their wide spread use in clinical and home environments.</p

    Mucin Variable Number Tandem Repeat Polymorphisms and Severity of Cystic Fibrosis Lung Disease: Significant Association with MUC5AC

    Get PDF
    Variability in cystic fibrosis (CF) lung disease is partially due to non-CFTR genetic modifiers. Mucin genes are very polymorphic, and mucins play a key role in the pathogenesis of CF lung disease; therefore, mucin genes are strong candidates as genetic modifiers. DNA from CF patients recruited for extremes of lung phenotype was analyzed by Southern blot or PCR to define variable number tandem repeat (VNTR) length polymorphisms for MUC1, MUC2, MUC5AC, and MUC7. VNTR length polymorphisms were tested for association with lung disease severity and for linkage disequilibrium (LD) with flanking single nucleotide polymorphisms (SNPs). No strong associations were found for MUC1, MUC2, or MUC7. A significant association was found between the overall distribution of MUC5AC VNTR length and CF lung disease severity (p = 0.025; n = 468 patients); plus, there was robust association of the specific 6.4 kb HinfI VNTR fragment with severity of lung disease (p = 6.2 x 10(-4) after Bonferroni correction). There was strong LD between MUC5AC VNTR length modes and flanking SNPs. The severity-associated 6.4 kb VNTR allele of MUC5AC was confirmed to be genetically distinct from the 6.3 kb allele, as it showed significantly stronger association with nearby SNPs. These data provide detailed respiratory mucin gene VNTR allele distributions in CF patients. Our data also show a novel link between the MUC5AC 6.4 kb VNTR allele and severity of CF lung disease. The LD pattern with surrounding SNPs suggests that the 6.4 kb allele contains, or is linked to, important functional genetic variation

    Cognitive behaviour therapy response and dropout rate across purging and nonpurging bulimia nervosa and binge eating disorder : DSM-5 implications

    Get PDF
    Background: With the imminent publication of the new edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), there has been a growing interest in the study of the boundaries across the three bulimic spectrum syndromes [bulimia nervosa-purging type (BN-P), bulimia nervosa-non purging type (BN-NP) and binge eating disorder (BED)]. Therefore, the aims of this study were to determine differences in treatment response and dropout rates following Cognitive Behavioural Therapy (CBT) across the three bulimic-spectrum syndromes. Method: The sample comprised of 454 females (87 BED, 327 BN-P and 40 BN-NP) diagnosed according to DSM-IV-TR criteria who were treated with 22 weekly outpatient sessions of group CBT therapy. Patients were assessed before and after treatment using a food and binging/purging diary and some clinical questionnaires in the field of ED. "Full remission" was defined as total absence of binging and purging (laxatives and/or vomiting) behaviors and psychological improvement for at least 4 (consecutive). Results: Full remission rate was found to be significantly higher in BED (69.5%) than in both BN-P (p < 0.005) and BN-NP (p < 0.001), which presented no significant differences between them (30.9% and 35.5%). The rate of dropout from group CBT was also higher in BED (33.7%) than in BN-P (p < 0.001) and BN-NP (p < 0.05), which were similar (15.4% and 12.8%, respectively). Conclusions: Results suggest that purging and non-purging BN have similar treatment response and dropping out rates, whereas BED appears as a separate diagnosis with better outcome for those who complete treatment. The results support the proposed new DSM-5 classification
    corecore