3,405 research outputs found
Diagnosing Xpert MTB/RIF-negative TB: Impact and cost of alternative algorithms for South Africa
Background. Use of Xpert MTB/RIF is being scaled up throughout South Africa for improved diagnosis of tuberculosis (TB). A large proportion of HIV-infected patients with possible TB are Xpert-negative on their initial test, and the existing diagnostic algorithm calls for these patients to have sputum culture (Xpert followed by culture (X/C)). We modelled the costs and impact of an alternative diagnostic algorithm in which these cultures are replaced with a second Xpert test (Xpert followed by Xpert (X/X)).Methods. An existing population-level decision model was used. Costs were estimated from Xpert implementation studies and public sectorprice and salary data. The number of patients requiring diagnosis was estimated from the literature, as were rates of TB treatment uptakeand loss to follow-up. TB and HIV positivity rates were estimated from the national TB register and laboratory databases.Results. At national programme scale in 2014, X/X (R969 million/year) is less expensive than X/C R1 095 million/year), potentially saving R126million/year (US$17.4 million). However, because Xpert is less sensitive than culture, X/X diagnoses 2% fewer TB cases. This is partly offset byhigher expected treatment uptake with X/X due to the faster availability of results, resulting in 1% more patients initiating treatment under X/Xthan X/C. The cost per TB patient initiated on treatment under X/X is R2 682, which is 12% less than under X/C (R3 046).Conclusions. Modifying the diagnostic algorithm from X/C to X/X could provide rapid results, simplify diagnostic processes, improve HIV/TB treatment outcomes, and generate cost savings
MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity
© 2016 Author(s). A direct relationship between gross ecosystem productivity (GEP) estimated by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll and temperate woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of GEP and four measures of photosynthetic potential, derived via parameterization of the light response curve: ecosystem light use efficiency (LUE), photosynthetic capacity (Pc), GEP at saturation (GEPsat), and quantum yield (α) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD) leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite-derived biophysical products constitute a measurement of ecosystem structure (e.g. leaf area index-quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity-quality of leaves), rather than GEP. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature, and/or precipitation) and relatively aseasonal ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite-derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). However, we found a statistical significant relationship between the seasonal measures of photosynthetic potential (Pc and LUE) and VIs, where each ecosystem aligns along a continuum; we emphasize here that knowledge of the conditions in which flux tower measurements and VIs or other remote sensing products converge greatly advances our understanding of the mechanisms driving the carbon cycle (phenology and climate drivers) and provides an ecological basis for interpretation of satellite-derived measures of greenness
An epidemiologic study of early biologic effects of benzene in Chinese workers.
Benzene is a recognized hematotoxin and leukemogen, but its mechanisms of action in humans are still uncertain. To provide insight into these processes, we carried out a cross-sectional study of 44 healthy workers currently exposed to benzene (median 8-hr time-weighted average; 31 ppm), and unexposed controls in Shanghai, China. Here we provide an overview of the study results on peripheral blood cells levels and somatic cell mutation frequency measured by the glycophorin A (GPA) gene loss assay and report on peripheral cytokine levels. All peripheral blood cells levels (i.e., total white blood cells, absolute lymphocyte count, platelets, red blood cells, and hemoglobin) were decreased among exposed workers compared to controls, with the exception of the red blood cell mean corpuscular volume, which was higher among exposed subjects. In contrast, peripheral cytokine levels (interleukin-3, interleukin-6, erythropoietin, granulocyte colony-stimulating factor, tissue necrosis factor-alpha) in a subset of the most highly exposed workers (n = 11) were similar to values in controls (n = 11), suggesting that benzene does not affect these growth factor levels in peripheral blood. The GPA assay measures stem cell or precursor erythroid cell mutations expressed in peripheral red blood cells of MN heterozygous subjects, identifying NN variants, which result from loss of the GPA M allele and duplication of the N allele, and N phi variants, which arise from gene inactivation. The NN (but not N phi) GPA variant cell frequency was elevated in the exposed workers compared with controls (mean +/- SD, 13.9 +/- 8.4 mutants per million cells versus 7.4 +/- 5.2 per million cells, (respectively; p = 0.0002), suggesting that benzene produces gene-duplicating but not gene-inactivating mutations at the GPA locus in bone marrow cells of exposed humans. These findings, combined with ongoing analyses of benzene macromolecular adducts and chromosomal aberrations, will provide an opportunity to comprehensively evaluate a wide range of early biologic effects associated with benzene exposure in humans
Disruption of the Key Ca2+ Binding Site in the Selectivity Filter of Neuronal Voltage-Gated Calcium Channels Inhibits Channel Trafficking
Voltage-gated calcium channels are exquisitely Ca2+ selective, conferred primarily by four conserved pore-loop glutamate residues contributing to the selectivity filter. There has been little previous work directly measuring whether the trafficking of calcium channels requires their ability to bind Ca2+ in the selectivity filter or to conduct Ca2+. Here, we examine trafficking of neuronal CaV2.1 and 2.2 channels with mutations in their selectivity filter and find reduced trafficking to the cell surface in cell lines. Furthermore, in hippocampal neurons, there is reduced trafficking to the somatic plasma membrane, into neurites, and to presynaptic terminals. However, the CaV2.2 selectivity filter mutants are still influenced by auxiliary α2δ subunits and, albeit to a reduced extent, by β subunits, indicating the channels are not grossly misfolded. Our results indicate that Ca2+ binding in the pore of CaV2 channels may promote their correct trafficking, in combination with auxiliary subunits. Furthermore, physiological studies utilizing selectivity filter mutant CaV channels should be interpreted with caution
Proteolytic maturation of α 2 δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels
The auxiliary α2δ subunits of voltage-gated calcium channels are extracellular membrane-associated proteins, which are post-translationally cleaved into disulfide-linked polypeptides α2 and δ. We now show, using α2δ constructs containing artificial cleavage sites, that this processing is an essential step permitting voltage-dependent activation of plasma membrane N-type (CaV2.2) calcium channels. Indeed, uncleaved α2δ inhibits native calcium currents in mammalian neurons. By inducing acute cell-surface proteolytic cleavage of α2δ, voltage-dependent activation of channels is promoted, independent from the trafficking role of α2δ. Uncleaved α2δ does not support trafficking of CaV2.2 channel complexes into neuronal processes, and inhibits Ca2+ entry into synaptic boutons, and we can reverse this by controlled intracellular proteolytic cleavage. We propose a model whereby uncleaved α2δ subunits maintain immature calcium channels in an inhibited state. Proteolytic processing of α2δ then permits voltage-dependent activation of the channels, acting as a checkpoint allowing trafficking only of mature calcium channel complexes into neuronal processes
Bilateral Assessment of Functional Tasks for Robot-assisted Therapy Applications
This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks
Reverse Transcriptase-Coupled Quantitative Real Time PCR Analysis of Cell-Free Transcription on the Chromatin-Assembled p21 Promoter
Background: Cell-free eukaryotic transcription assays have contributed tremendously to the current understanding of the molecular mechanisms that govern transcription at eukaryotic promoters. Currently, the conventional G-less cassette transcription assay is one of the simplest and fastest methods for measuring transcription in vitro. This method requires several components, including the radioisotope labelling of RNA product during the transcription reaction followed by visualization of transcripts using autoradiography. Methodology/Principal Findings: To further simplify and expedite the conventional G-less cassette transcription assay, we have developed a method to incorporate a reverse transcriptase-coupled quantitative real time PCR (RT-qPCR). By using DNA template depletion steps that include DNA template immobilization, Trizol extraction and DNase I treatment, we have successfully enriched p21 promoter-driven transcripts over DNA templates. The quantification results of RNA transcripts using the RT-qPCR assay were comparable to the results of the conventional G-less cassette transcription assay both in naked DNA and chromatin-assembled templates. Conclusions: We first report a proof-of-concept demonstration that incorporating RT-qPCR in cell-free transcription assays can be a simpler and faster alternative method to the conventional radioisotope-mediated transcription assays. This method will be useful for developing high throughput in vitro transcription assays and provide quantitative data for RNA transcript
Communicating population health statistics through graphs: a randomised controlled trial of graph design interventions
BACKGROUND: Australian epidemiologists have recognised that lay readers have difficulty understanding statistical graphs in reports on population health. This study aimed to provide evidence for graph design improvements that increase comprehension by non-experts. METHODS: This was a double-blind, randomised, controlled trial of graph-design interventions, conducted as a postal survey. Control and intervention participants were randomly selected from telephone directories of health system employees. Eligible participants were on duty at the listed location during the study period. Controls received a booklet of 12 graphs from original publications, and intervention participants received a booklet of the same graphs with design modifications. A questionnaire with 39 interpretation tasks was included with the booklet. Interventions were assessed using the ratio of the prevalence of correct responses given by the intervention group to those given by the control group for each task. RESULTS: The response rate from 543 eligible participants (261 intervention and 282 control) was 67%. The prevalence of correct answers in the control group ranged from 13% for a task requiring knowledge of an acronym to 97% for a task identifying the largest category in a pie chart. Interventions producing the greatest improvement in comprehension were: changing a pie chart to a bar graph (3.6-fold increase in correct point reading), changing the y axis of a graph so that the upward direction represented an increase (2.9-fold increase in correct judgement of trend direction), a footnote to explain an acronym (2.5-fold increase in knowledge of the acronym), and matching the y axis range of two adjacent graphs (two-fold increase in correct comparison of the relative difference in prevalence between two population subgroups). CONCLUSION: Profound population health messages can be lost through use of overly technical language and unfamiliar statistical measures. In our study, most participants did not understand age standardisation and confidence intervals. Inventive approaches are required to address this problem
Thrombin Induces Macrophage Migration Inhibitory Factor Release and Upregulation in Urothelium: A Possible Contribution to Bladder Inflammation
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine expressed by urothelial cells that mediates bladder inflammation. We investigated the effect of stimulation with thrombin, a Protease Activated Receptor-1 (PAR1) agonist, on MIF release and MIF mRNA upregulation in urothelial cells.MIF and PAR1 expression was examined in normal human immortalized urothelial cells (UROtsa) using real-time RT-PCR, Western blotting and dual immunostaining. MIF and PAR1 immunostaining was also examined in rat urothelium. The effect of thrombin stimulation (100 nM) on urothelial MIF release was examined in UROtsa cells (in vitro) and in rats (in vivo). UROtsa cells were stimulated with thrombin, culture media were collected at different time points and MIF amounts were determined by ELISA. Pentobarbital anesthetized rats received intravesical saline (control), thrombin, or thrombin +2% lidocaine (to block nerve activity) for 1 hr, intraluminal fluid was collected and MIF amounts determined by ELISA. Bladder or UROtsa MIF mRNA was measured using real time RT-PCR.UROtsa cells constitutively express MIF and PAR1 and immunostaining for both was observed in these cells and in the basal and intermediate layers of rat urothelium. Thrombin stimulation of urothelial cells resulted in a concentration- and time-dependent increase in MIF release both in vitro (UROtsa; 2.8-fold increase at 1 hr) and in vivo (rat; 4.5-fold) while heat-inactivated thrombin had no effect. In rats, thrombin-induced MIF release was reduced but not abolished by intravesical lidocaine treatment. Thrombin also upregulated MIF mRNA in UROtsa cells (3.3-fold increase) and in the rat bladder (2-fold increase) where the effect was reduced (1.4-fold) by lidocaine treatment.Urothelial cells express both MIF and PAR1. Activation of urothelial PAR1 receptors, either by locally generated thrombin or proteases present in the urine, may mediate bladder inflammation by inducing urothelial MIF release and upregulating urothelial MIF expression
- …