3,361 research outputs found

    Urinary Arsenic Metabolites in Children and Adults Exposed to Arsenic in Drinking Water in Inner Mongolia, China

    Get PDF
    BACKGROUND: We report the concentrations and distributions of urinary arsenic (As) metabolites in 233 residents exposed to 20, 90, or 160 μg/L inorganic arsenic (iAs) in drinking water from three villages in Hohhot, Inner Mongolia, China, that formed one control and two exposed groups. METHODS: We used hydride generation-atomic absorption spectrometry (HGAAS) to determine iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). RESULTS: The concentrations of each urinary As species in the two exposed groups were significantly higher than in the control group for both children and adults. Both children and adults in exposed groups had higher percent iAs and MMA and lower percent DMA, and low primary and secondary methylation indices (PMI and SMI, respectively) than those in the control group. However, children showed significant increases in percent DMA and the SMI as well as decreases in the percent MMA when the iAs exposure level increased from 90 to 160 μg/L. In addition, children in the two exposed groups showed lower percent MMA but higher percent DMA and higher SMI than adults in the same exposed group. No significant differences in As metabolite concentrations and distributions were found between males and females in each group. A significant correlation was also found in the SMI between 11 pairs of children and their mothers from the 160-μg/L–exposed group. CONCLUSIONS: Children had higher a capacity for secondary methylation of As than adults when exposed to the same concentrations of iAs in drinking water. Exposure to As may increase the capacity for methylation in children to some extent

    Properties of plasmoids observed in Saturn’s dayside and nightside magnetodisc

    Get PDF
    Plasmoid is a key structure for transferring magnetic flux and plasma in planetary magnetospheres. At Earth, plasmoids are key media which transfer energy and mass in the "Dungey Cycle". For giant planets, plasmoids are primarily generated by the dynamic processes associated with “Vasyliunas Cycle”. It is generally believed that planetary magnetotails are favorable for producing plasmoids. Nevertheless, recent studies reveal that magnetic field lines could be sufficiently stretched to allow magnetic reconnection in Saturn’s dayside magnetodisc. In the study, we report direct observations of plasmoids in Saturn’s dayside magnetodisc for the first time. Moreover, we perform a statistical investigation on the global plasmoid electron density distribution. The results show an inverse correlation between the nightside plasmoid electron density and local time, and the maximum plasmoid electron density around prenoon local time on the dayside. These results are consistent with the magnetospheric circulation picture associated with the "Vasyliunas Cycle"

    Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review

    Get PDF
    This review evaluates the effectiveness of robotic and virtual reality technologies used for neurological rehabilitation in stroke survivors. It examines each rehabilitation technology in turn before considering combinations of these technologies and the complexities of rehabilitation outcome assessment. There is high-quality evidence that upper-limb robotic rehabilitation technologies improve movement, strength and activities of daily living, whilst the evidence for robotic lower-limb rehabilitation is currently not as convincing. Virtual reality technologies also improve activities of daily living. Whilst the benefit of these technologies over dose-controlled conventional rehabilitation is likely to be small, there is a role for both technologies as part of a broader rehabilitation programme, where they may help to increase the intensity and amount of therapy delivered. Combining robotic and virtual reality technologies in a rehabilitation programme may further improve rehabilitation outcomes and we would advocate randomised controlled trials of these technologies in combination

    Determinants of postnatal spleen tissue regeneration and organogenesis

    Get PDF
    Abstract The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as well as infectious diseases

    Fire Ant Alate Wing Motion Data and Numerical Reconstruction

    Get PDF
    The wing motions of a male and a female fire ant alate, which beat their wings at 108 and 96 Hz, respectively, were captured with a stereo imaging system at a high frame rate of 8,000 frames per second. By processing the high-speed image frames, the three-dimensional wingtip positions and the wing surface orientation angles were determined with a high phase resolution, i.e. 74 and 83 phases per period for the male and the female, respectively. A numerical reconstruction of the stereo wingbeat images demonstrated that the data collected described almost all the details of the wing surface motion, so that further computational fluid dynamic simulations are possible for fire ant alate flight

    Measurement of the adhesion between single melamine-formaldehyde resin microparticles and a flat fabric surface using AFM

    Get PDF
    An understanding of the adhesion of microparticles, particularly microcapsules, containing a functional component to a fabric surface is crucial to an effective application of this component to the fibre. Fabric surface is very rough; hence, direct measurement of the adhesion of single microparticles to surfaces with a roughness greater than the particle diameter is difficult. In the study reported here, cotton films were generated by dissolving cotton powder in an organic solvent and their properties including surface roughness, thickness, contact angle and purity were characterised. The adhesive forces between single melamineformaldehyde (MF) resin microparticles and a cotton film under ambient conditions with a relative humidity of above 40% were measured using atomic force microscopy; they are considered to be dominated by capillary forces. It was found that there was little adhesion between a MF microparticle and a cotton film in an aqueous solution of sodium dodecylbenzene sulphonate as surfactant. Repulsion between them was observed, but it reduced with increase in the surfactant concentration and decrease in the pH of the solution. The repulsion contributions are thought to originate mainly from electrostatic repulsion. It is believed that the studies on the adhesion between single MF microparticles and a cotton film under ambient conditions or dispersed in surfactant solutions, are beneficial to the attempts to enhance the adhesion of microcapsules to fabric surfaces via a modification of their surface composition and morphology

    STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage

    Get PDF
    STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria
    corecore