35 research outputs found

    Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates

    Full text link
    Solitons are among the most distinguishing fundamental excitations in a wide range of non-linear systems such as water in narrow channels, high speed optical communication, molecular biology and astrophysics. Stabilized by a balance between spreading and focusing, solitons are wavepackets, which share some exceptional generic features like form-stability and particle-like properties. Ultra-cold quantum gases represent very pure and well-controlled non-linear systems, therefore offering unique possibilities to study soliton dynamics. Here we report on the first observation of long-lived dark and dark-bright solitons with lifetimes of up to several seconds as well as their dynamics in highly stable optically trapped 87^{87}Rb Bose-Einstein condensates. In particular, our detailed studies of dark and dark-bright soliton oscillations reveal the particle-like nature of these collective excitations for the first time. In addition, we discuss the collision between these two types of solitary excitations in Bose-Einstein condensates.Comment: 9 pages, 4 figure

    Systems and technologies for objective evaluation of technical skills in laparoscopic surgery

    Get PDF
    Minimally invasive surgery is a highly demanding surgical approach regarding technical requirements for the surgeon, who must be trained in order to perform a safe surgical intervention. Traditional surgical education in minimally invasive surgery is commonly based on subjective criteria to quantify and evaluate surgical abilities, which could be potentially unsafe for the patient. Authors, surgeons and associations are increasingly demanding the development of more objective assessment tools that can accredit surgeons as technically competent. This paper describes the state of the art in objective assessment methods of surgical skills. It gives an overview on assessment systems based on structured checklists and rating scales, surgical simulators, and instrument motion analysis. As a future work, an objective and automatic assessment method of surgical skills should be standardized as a means towards proficiency-based curricula for training in laparoscopic surgery and its certification

    Measurements of atmospheric neutrinos and antineutrinos in the MINOS far detector

    Get PDF
    This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current v_µ and v¯_µ interactions, and 701 contained-vertex showers, composed mainly of charged-current v_e and v¯_e interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of v_µ and v¯_µ events. The observed ration of v¯_µ to v_µ events is compared with the Monte Carlo (MC) simulation, giving a double ration of (R^(data)_(v¯/v))/(R^(MC)_(v¯/v)) = 1.03 ± 0.08(stat) ± 0.08(syst). The v_µ and v¯_µ data are separated into bins of L/E resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed L/E distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of |Δm^2| = (1.9 ± 0.4) x 10^(-3) eV^2 and sin^(2)2θ > 0.86. The fit is extended to incorporate separate v_µ and v¯_µ oscillation parameters, returning 90% confidence limits of |Δm^2|-|Δm¯^2| = 0.6^(2.4)_(-0.8) x 10^(-3) eV^2 on the difference between the squared-mass splittings for neutrinos and antineutrinos

    Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS

    Get PDF
    We report measurements of oscillation parameters from νμ and ν̅ μ disappearance using beam and atmospheric data from MINOS. The data comprise exposures of 10.71×1020 protons on target in the νμ-dominated beam, 3.36×1020 protons on target in the ν̅ μ-enhanced beam, and 37.88 kton yr of atmospheric neutrinos. Assuming identical ν and ν̅ oscillation parameters, we measure |Δm2|=(2.41-0.10+0.09)×10-3  eV2 and sin⁡2(2θ)=0.950-0.036+0.035. Allowing independent ν and ν̅ oscillations, we measure antineutrino parameters of |Δm̅ 2|=(2.50-0.25+0.23)×10-3  eV2 and sin⁡2(2θ̅ )=0.97-0.08+0.03, with minimal change to the neutrino parameters

    Genome Dynamics of Short Oligonucleotides: The Example of Bacterial DNA Uptake Enhancing Sequences

    Get PDF
    Among the many bacteria naturally competent for transformation by DNA uptake—a phenomenon with significant clinical and financial implications— Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES) causes preferential uptake of conspecific DNA, but the function(s) behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein/transcription factor-binding DNAs

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie

    State of the Climate in 2016

    Get PDF

    International Human Resource Management in the Introductory HRM Course

    No full text
    This paper explores the extent to which students in the introductory HRM course in US institutions are likely to be exposed to information on international and cross-cultural aspects of HRM. Two methods are used: (1) an analysis of international content in fifteen popular introductory HRM textbooks and (2) a survey of professors teaching introductory HRM. The vast majority of responding instructors said their classes got some exposure to international issues in HRM, and most introductory texts included some relevant content. Critiques of international boxed features and dedicated IHRM chapters are provided, and suggestions for improving the quality and depth of IHRM content in introductory textbooks are made

    Comparisons of annual modulations in MINOS with the event rate modulation in CoGeNT

    Get PDF
    The CoGeNT Collaboration has recently published results from a fifteen month data set which indicate an annual modulation in the event rate similar to what is expected from weakly interacting massive particle interactions. It has been suggested that the CoGeNT modulation may actually be caused by other annually modulating phenomena, specifically the flux of atmospheric muons underground or the radon level in the laboratory. We have compared the phase of the CoGeNT data modulation to that of the concurrent atmospheric muon and radon data collected by the MINOS experiment which occupies an adjacent experimental hall in the Soudan Underground Laboratory. The results presented are obtained by performing a shape-free χ2 data-to-data comparison and from a simultaneous fit of the MINOS and CoGeNT data to phase-shifted sinusoidal functions. Both tests indicate that the phase of the CoGeNT modulation is inconsistent with the phases of the MINOS muon and radon modulations at the 3.0σ level
    corecore