1,215 research outputs found

    Idiopathic hypercalciuria and formation of calcium renal stones

    Get PDF
    The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall’s plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is 200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone disea

    The Right Rotation For Your Farm

    Get PDF
    One rotation gives most grain, another most total feed. Here are principles for choosing the best rotation for you

    Soil resources and potential for agricultural development in Bahr El Jebel in southern Sudan, Jonglei Canal project area

    Get PDF
    The author has identified the following significant results. Fourteen LANDSAT scenes were used to produce mosaics of the 167, 474 sq km study area. These were black and white MSS 7 images and false color composite images. Five major soil-landscape units were delineated on the mosaics, and these were subdivided into a total of 40 soil mapping units. Aerial reconnaissance was useful in defining boundaries between mapping units and in estimating the proportion of the various soils which composed each mapping unit. Ground surveying permitted first-hand observation of major soils and sampling for quantitative laboratory analysis. Soil interpretations were made, including properties, potentials, and limitations

    Mechanisms of human kidney stone formation

    Get PDF
    The precise mechanisms of kidney stone formation and growth are not completely known, even though human stone disease appears to be one of the oldest diseases known to medicine. With the advent of the new digital endoscope and detailed renal physiological studies performed on well phenotyped stone formers, substantial advances have been made in our knowledge of the pathogenesis of the most common type of stone former, the idiopathic calcium oxalate stone former as well as nine other stone forming groups. The observations from our group on human stone formers and those of others on model systems have suggested four entirely different pathways for kidney stone formation. Calcium oxalate stone growth over sites of Randall's plaque appear to be the primary mode of stone formation for those patients with hypercalciuria. Overgrowths off the ends of Bellini duct plugs have been noted in most stone phenotypes, do they result in a clinical stone? Micro-lith formation does occur within the lumens of dilated inner medullary collecting ducts of cystinuric stone formers and appear to be confined to this space. Lastly, cystinuric stone formers also have numerous small, oval, smooth yellow appearing calyceal stones suggestive of formation in free solution. The scientific basis for each of these four modes of stone formation are reviewed and used to explore novel research opportunities

    Micro-CT imaging of Randall's plaques

    Get PDF
    Micro-computed tomographic imaging (micro-CT) provides unprecedented information on stone structure and mineral composition. High-resolution micro-CT even allows visualization of the lumens of tubule and/or vessels within Randall's plaque, on stones or in papillary biopsies, thus giving a non-destructive way to study these sites of stone adhesion. This paper also shows an example of a stone growing on a different anchoring mechanism: a mineral plug within the lumen of a Bellini duct (BD plug). Micro-CT shows striking structural differences between stones that have grown on Randall's plaque and those that have grown on BD plugs. Thus, Randall's plaque can be distinguished by micro-CT, and this non-destructive method shows great promise in helping to elucidate the different mechanisms by which small stones are retained in the kidney during the development of nephrolithiasis

    Patients want to know about the \u27cardiac blues\u27

    Full text link
    BACKGROUND: Much attention has been given to identifying and supporting the minority of patients who develop severe clinical depression after a cardiac event. However, relatively little has been given to supporting the many patients who experience transient but significant emotional disturbance that we term the \u27cardiac blues\u27. OBJECTIVE: The aim of this study was to investigate patients\u27 preferences regarding information provision about cardiac blues. METHODS: One hundred and sixty consecutive cardiac patients admitted to two Victorian hospitals in Australia were interviewed three times over six months. They were asked about emotional issues, including information provision preferences. RESULTS: Four out of five (81%) patients would like to have received information about the cardiac blues, but only a minority received this information. CONCLUSION: Most patients want to know about cardiac blues. The development and evaluation of resources for health professionals and patients to support recovery through cardiac blues appears warranted

    Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones

    Get PDF
    Human stone calcium phosphate (CaP) content correlates with higher urine CaP supersaturation (SS) and urine pH as well as with the number of shock wave lithotripsy (SWL) treatments. SWL does damage medullary collecting ducts and vasa recta, sites for urine pH regulation. We tested the hypothesis that SWL raises urine pH and therefore Cap SS, resulting in CaP nucleation and tubular plugging. The left kidney (T) of nine farm pigs was treated with SWL, and metabolic studies were performed using bilateral ureteral catheters for up to 70 days post-SWL. Some animals were given an NH4Cl load to sort out effects on urine pH of CD injury vs. increased HCO3 (-) delivery. Histopathological studies were performed at the end of the functional studies. The mean pH of the T kidneys exceeded that of the control (C) kidneys by 0.18 units in 14 experiments on 9 pigs. Increased HCO3 (-) delivery to CD is at least partly responsible for the pH difference because NH4Cl acidosis abolished it. The T kidneys excreted more Na, K, HCO3 (-), water, Ca, Mg, and Cl than C kidneys. A single nephron site that could produce losses of all of these is the thick ascending limb. Extensive injury was noted in medullary thick ascending limbs and collecting ducts. Linear bands showing nephron loss and fibrosis were found in the cortex and extended into the medulla. Thus SWL produces tubule cell injury easily observed histopathologically that leads to functional disturbances across a wide range of electrolyte metabolism including higher than control urine pH

    Label-free proteomic methodology for the analysis of human kidney stone matrix composition.

    Get PDF
    Background: Kidney stone matrix protein composition is an important yet poorly understood aspect of nephrolithiasis. We hypothesized that this proteome is considerably more complex than previous reports have indicated and that comprehensive proteomic profiling of the kidney stone matrix may demonstrate relevant constitutive differences between stones. We have analyzed the matrices of two unique human calcium oxalate stones (CaOx-Ia and CaOx-Id) using a simple but effective chaotropic reducing solution for extraction/solubilization combined with label-free quantitative mass spectrometry to generate a comprehensive profile of their proteomes, including physicochemical and bioinformatic analysis.` Results: We identified and quantified 1,059 unique protein database entries in the two human kidney stone samples, revealing a more complex proteome than previously reported. Protein composition reflects a common range of proteins related to immune response, inflammation, injury, and tissue repair, along with a more diverse set of proteins unique to each stone. Conclusion: The use of a simple chaotropic reducing solution and moderate sonication for extraction and solubilization of kidney stone powders combined with label-free quantitative mass spectrometry has yielded the most comprehensive list to date of the proteins that constitute the human kidney stone proteome. Electronic supplementary material: The online version of this article (doi:10.1186/s12953-016-0093-x) contains supplementary material, which is available to authorized users
    • …
    corecore