
Micro-CT imaging of Randall’s plaques

James C. Williams Jr,
Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill 
Drive MS 5055Y, Indianapolis, IN 46202-5120, USA

James E. Lingeman,
International Kidney Stone Institute, Methodist Hospital, Indianapolis, IN, USA

Fredric L. Coe,
Nephrology Section, University of Chicago, Chicago, IL, USA

Elaine M. Worcester, and
Nephrology Section, University of Chicago, Chicago, IL, USA

Andrew P. Evan
Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill 
Drive MS 5055Y, Indianapolis, IN 46202-5120, USA

International Kidney Stone Institute, Methodist Hospital, Indianapolis, IN, USA

James C. Williams: jwillia3@iupui.edu

Abstract

Micro-computed tomographic imaging (micro-CT) provides unprecedented information on stone 

structure and mineral composition. High-resolution micro-CT even allows visualization of the 

lumens of tubule and/or vessels within Randall’s plaque, on stones or in papillary biopsies, thus 

giving a non-destructive way to study these sites of stone adhesion. This paper also shows an 

example of a stone growing on a different anchoring mechanism: a mineral plug within the lumen 

of a Bellini duct (BD plug). Micro-CT shows striking structural differences between stones that 

have grown on Randall’s plaque and those that have grown on BD plugs. Thus, Randall’s plaque 

can be distinguished by micro-CT, and this non-destructive method shows great promise in 

helping to elucidate the different mechanisms by which small stones are retained in the kidney 

during the development of nephrolithiasis.
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Introduction

Micro-computed tomographic imaging (micro-CT) is a technique developed in the 1980s but 

first applied to urinary stones around the year 2000 [1]. Micro-CT utilizes multiple X-ray 

images of a specimen to reconstruct the three-dimensional structure as visible by differences 

in X-ray attenuation [2]. Urinary stones are composed of minerals that vary in their effective 

atomic number [3], and so micro-CT provides an excellent way to visualize stone structure 

in vitro [2].

Randall’s plaques contain apatite [4], which has the highest effective atomic number of all 

the common stone minerals [3]. Thus, even when the apatite crystals are rather diffusely 

distributed in tissue, they can be visualized by X-rays in high contrast with surrounding 

tissue [5]. In this way, the three-dimensional arrangement of these tissue calcifications can 

be studied.

But Randall’s plaques are also known to be visible on stones [6, 7], even stones that have 

been passed spontaneously. For example, Cifuentes et al. examined 500 stones that had been 

passed by stone formers and delivered for analysis, and found 142 of these with a concave 

surface, and 61 of these bore remnants of what appeared to be Randall’s plaque [8]. This 

identity was confirmed by identifying the presence of calcified renal tubules within the 

apatite remnant on several similar stones [9].

We have found that micro-CT allows the visualization of Randall’s plaques in tissue and 

stones removed from patients with various forms of calcium oxalate stone disease, and this 

paper details the morphologic differences of Randall’s plaque and duct of Bellini (BD) 

plugs.

Methods

Stones and papillary biopsies were obtained from consenting patients being treated for 

kidney stones, as previously described [4]. Micro-CT was performed on specimens, in vitro, 

using a Skyscan 1172 system (Bruker-MicroCT, Kontich, Belgium). Typical scans utilized 

50 kV with a 0.5 mm Al filter, rotating the specimen 0.4° for each X-ray image. 

Reconstruction voxel size ranged 0.9–5.6 µm for images shown. Viewing of reconstructed 

image stacks was accomplished using ImageJ (www.imagej.nih.gov) and Vaa3D 

(www.vaa3d.org).

Recent characterization of Randall’s plaque has been done in idiopathic calcium oxalate 

stone formers, a specific form of stone disease in which the patients show no systemic 

disorder other than familial (idiopathic) hypercalciuria [10]. These stone formers appear to 

initiate all of their stones on interstitial Randall’s plaque [11, 12], and it is from this kind of 

stone former that the Randall’s plaque examples in this paper are taken. Randall’s plaque 

has also been seen in other types of stone formers [13], but the importance of interstitial 

plaque to initiation of stones in those other groups has not been studied.

To illustrate the nature of Randall’s plaque, and its distinction from other mechanisms by 

which stones may be retained within the kidney during the earliest stages of growth [14], we 
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also show a stone taken from a patient in which apatite was deposited from the urine onto 

the end of a BD plug also formed from apatite.

Imaging Randall’s plaque in tissue

Figure 1 shows an example of a biopsy from the papilla of a calcium oxalate stone former 

having dense Randall’s plaque visible at the papillary surface. The micro-CT reconstruction 

of the densest portion of the mineralized regions in this biopsy reveals several features that 

we regularly see with Randall’s plaque: first, the interstitial mineralization shows no 

layering in the accumulation of apatite that occurs (which is quite unlike what has been seen 

in apatite stones [15], as described below). It would seem that an entire region of interstitial 

connective tissue becomes mineralized, with the density of apatite reaching some maximum 

value that remains uniform with the densest portions of Randall’s plaque. Second, this 

interstitial mineralization consistently shows cylindrical void regions that have diameters 

consistent with their representing lumens of tubules and vessels in the papilla. Third, the 

periphery of the dense region gives way to less dense mineralization of interstitium, where it 

is often possible to visualize individual tubules that are mineralized, with the surrounding 

interstitium relatively devoid of mineral.

Previous work has demonstrated that Randall’s plaque consists of interstitial mineralization 

that begins around the thin limbs of Henle’s loop [10]. The micro-CT images typically show 

tubules surrounded by mineral at the edges of Randall’s plaque, and the diameter of these 

tubular segments is consistent with their being thin limbs. For example, a tubule surrounded 

by mineral at the edge of the field shown in the inset in Fig. 1b has a lumen of size 21 µm at 

its narrowest portion and 27 µm at its widest. This size is consistent with the tubule being a 

thin limb.

Note that the form of interstitial mineralization that is seen in classic Randall’s plaque 

differs dramatically from the accumulation of mineral in tubular lumens, as seen in at least 

eight other forms of stone diseases [13]. In Randall’s plaque, the mineral is initially 

deposited within the basement membrane of thin limbs of Henle’s loop [10], and in dense 

forms of the plaque; by histologic staining, it completely fills the interstitium [4]. However, 

even in the dense forms of Randall’s plaque, the tubule lumens are clear of mineral and the 

epithelium of tubules is normal [4, 13]. In contrast, deposits of mineral in tubule lumens lead 

to destruction of the epithelial cells and often to gross dilation of the lumen size [13, 16].

As mentioned above, micro-CT images of Randalls plaque show that the apatite mineral can 

be rather evenly distributed (at least at the micron-size level) through the interstitial space 

(Fig. 1). This appearance is in contrast to the typical appearance of apatite in urinary stones, 

in which the apatite mineral appears in layers of alternating high and low density (layers 

ranging from about 100 to >1,000 µm in thickness) [15]. That is, the deposit of apatite 

during stone growth in urine often consists of deposition of organic matrix relatively poor in 

apatite crystals, alternating with dense deposition of apatite crystals with apparently much 

less matrix. In contrast, the deposition of apatite within the papillary interstitium of the 

densest regions of Randall’s plaque shows relatively even deposition of mineral throughout 

the interstitial matrix (Fig. 1).
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Imaging Randall’s plaque on stones

Figure 2 shows micro-CT images of a small calcium oxalate stone that was plucked from a 

Randall’s plaque-bearing papilla during ureteroscopy. The morphology of the Randall’s 

plaque that pulled away with this stone is representative of many such stones that have been 

examined by micro-CT over the past few years.

The urinary stone in Fig. 2 consists of a head composed mostly of calcium oxalate 

monohydrate approximately 400 µm tall and 750 µm in diameter. The region of Randall’s 

plaque beneath the stone has a brighter appearance, consistent with it being composed of 

apatite, and it also contains cylindrical spaces that appear to be lumens of vessels and 

tubules (Fig. 2). We did not report these structures in our first micro-CT descriptions of 

Randall’s plaque [11], because the scans of those stones were not at a high enough 

resolution to reveal the luminal spaces. Most of the luminal spaces we have observed by 

micro-CT in Randall’s plaque are 10–20 µm in diameter, making them likely candidates for 

lumens of thin limbs and capillaries (Figs. 2, 4). Our earliest stone scans were done with a 

system that allowed, at best, a voxel size of 20 µm and a resolution even poorer than that 

[11]. Thus, it would not have been possible to have seen the lumens of vessels or thin limbs 

in those scans. When we have rescanned some of those older patient stones using higher 

resolution, we do indeed see luminal spaces within the apatite regions we had previously 

identified as being portions of interstitial Randall’s plaque adherent to the stone.

Comparison with non-Randall’s plaque stone

Figure 3 shows micro-CT images of a stone that was attached to the renal papilla, but in a 

patient with many dilated ducts and BD plugs visible during the surgical procedure. The 

stone consists of a head composed of apatite in the layered morphology commonly seen in 

apatite stones, which apparently grew onto the end of an apatite plug that occupied a grossly 

dilated duct of Bellini.

BD plugs of apatite have been recently described in patients forming calcium phosphate 

stones [17], and the BD plug shown in Fig. 3 has characteristics similar to that reported in 

that paper: the apatite in the BD plug is densely packed, yielding a high value for X-ray 

attenuation (the highest value seen for any stone mineral [18]). This apatite also shows signs 

of having been laid down in incremental layers; note the alternating layers of light and dark 

within the apatite plug, as shown in Fig. 4. The exterior surface of the apatite plug has well-

defined edges high in mineral content, in contrast to Randall’s plaque, in which the 

mineralization of the interstitium declines gradually at its peripheral boundary. The ductal 

plug shows no cylindrical passage-ways through its structure, which is consistent with its 

origin being entirely within the lumen of a collecting duct; in contrast, in Randall’s plaque 

the lumens of tubules and vessels can be seen to remain intact through the mineralized 

interstitium. Finally, the dimensions of the BD plug—in Fig. 3 about 2 mm in diameter and 

2.5 mm long—are consistent with the size of a dilated collecting duct. Such dilated ducts, 

filled with mineral, have been described in a number of forms of stone disease [13].

Figure 4 shows Randall’s plaque and BD plug side-by-side, and lists characteristics for each, 

as just described. Note that the planes of section shown in Fig. 4 are different from those 

Williams et al. Page 4

Urolithiasis. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



shown in Figs. 2 and 3. Figure 4 shows sections across the plaque and plug approximately 

parallel to the original papillary surface. That is, these are cross-sections through the 

anchoring apatite structure in both cases. Note additionally that the level of magnification is 

quite different between the plaque and plug; however, even when imaged at higher power 

the apatite plug shows no evidence of the luminal structures visible in the Randall’s plaque.

Summary

By micro-CT, interstitial Randall’s plaque is characterized by a relatively even distribution 

of apatite within the interstitium of the dense portion of the plaque, with apatite density 

declining gradually at the periphery of the plaque. This is in marked contrast with the 

alternating layers of high and low X-ray attenuations that characterize a typical apatite stone 

formed in the urine. Randall’s plaque additionally shows the presence of low-attenuation 

regions of cylindrical shape, which are evidently the luminal spaces of tubules and vascular 

elements that ran through the calcified interstitium. These characteristics of even mineral 

distribution within the interstitium and cylindrical voids showing the lumens of tubules and 

vessels are seen both in the remnants of Randall’s plaque adherent to stones and in Randall’s 

plaque visualized within papillary biopsies. These characteristics are quite different from the 

appearance of apatite in a BD plug. Thus, Randall’s plaque can be distinguished by micro-

CT, and this non-destructive method shows great promise in helping to elucidate the 

different mechanisms by which small stones are retained in the kidney during the 

development of nephrolithiasis.
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Fig. 1. 
Micro-CT imaging of Randall’s plaque in human papillary biopsy. a Inset ureteroscopic 

image of papillary surface before biopsy. a X-ray image of biopsy. About 450 such images 

were taken, with the specimen rotated 0.4° between each image. This image series was used 

for tomographic reconstruction. b Reconstructed slice through the biopsy, with inset 

showing higher magnification of a small portion of Randall’s plaque within the tissue
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Fig. 2. 
Small calcium oxalate monohydrate stone, growing on Randall’s plaque. a Ureteroscopic 

view of stone (arrowhead) before removal. b Surface rendering of the 3D micro-CT image 

stack shows a relatively smooth stone surface (top) with some polyhedral calcium oxalate 

dihydrate (COD) crystals, but a ragged surface for the Randall’s plaque, which was pulled 

off the papilla tip. c Micro-CT image slice showing stone attached to plaque. Some lumens 

of tubules and/or vessels within the plaque are marked with arrows

Williams et al. Page 8

Urolithiasis. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Apatite stone growing on end of BD plug. a Photograph of stone, after removal, shown on 

mm-grid paper. b Surface reconstruction of stone, showing head of stone on top of apatite 

plug. c Micro-CT image slice, showing the distinct morphologies of the apatite portion that 

grew in the calyceal urine and the apatite that formed within the BD lumen
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Fig. 4. 
Randall’s plaque and BD plug, both composed of apatite, shown side by side. See text for 

details
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