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Abstract

The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without 

systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of 

interstitial apatite deposits, known as Randall’s plaque. By contrast some stones are composed 

largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen 

phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. 

These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone 

formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of 

supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk 

of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment 

with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also 

increase stone risk and often result in negative calcium balance. Reduced renal calcium 

reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics 

lower urine calcium levels and potentially reduce the risk of stone recurrence and bone diseas

Introduction

Kidney stones have increased in prevalence over the past 50 years in most countries, and as 

of 2010 the prevalence in the United States was 8.8%, compared with 5.5% in 19941. The 

prevalence is higher in men (10.6% among men compared with 7.1% among women in the 

recent United States data) and in Causasians compared with Africans1, and at least 35% of 

first time stone formers will have one or more recurrences. As stone disease often affects 

adults during their working years, the costs of stone disease include both medical 

intervention as well as time lost from work, school, or family care, and exceeds $10 billion 

dollars yearly in the United States2. The majority of stones (85%) contain primarily calcium 

oxalate (CaOx) admixed with some calcium phosphate (CaP) in the form of apatite or 

brushite, or occasionally uric acid; less commonly they may be composed primarily of CaP3. 

Non-calcium stones may be made of uric acid or cystine. Although many systemic diseases, 

such as primary hyperparathyroidism, bowel disease and renal tubular acidosis, can result in 
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calcium stone formation, the majority of calcium stones are found in people with no 

systemic illness. Many idiopathic patients who form calcium stones have metabolic 

abnormalities that can be detected by 24 hour urine analysis but are not considered to be 

systemic disease. Among the most common of these abnormalities is idiopathic 

hypercalciuria4. This disorder has been shown to be heritable, but is also influenced by 

environmental factors such as diet.

Since most kidney stones seen in clinical practice will be idiopathic calcium stones, and the 

commonest predisposing factor in these patients is hypercalciuria, the remainder of this 

review will concentrate on these patients, and discuss the mechanisms of idiopathic calcium 

stone formation as well as potential therapeutic strategies to correct hypercalciuria and 

reduce the risk of stone formation.

Patient phenotyping

A traditional method of phenotyping patients with calcium stones includes analysis of stone 

crystal composition as well as consideration of the presence or absence of established 

diseases that could cause stones. Among idiopathic patients, those whose stones are 

predominantly composed of CaOx (>50%) are considered to be a separate group from those 

whose stones are predominantly composed of calcium phosphate (CaP) crystals such as 

apatite or brushite5.

Modern endoscopy techniques enable direct renal papillary visualization during stone 

surgery and this has added papillary morphology to our phenotyping. Direct biopsy of the 

papillum enables additional refinement of the stone phenotype but is unlikely to be used for 

patient care as it is a research tool at this time.

Formation of idiopathic calcium stones

A key question regarding calcium stone formation is whether these stones form in contact 

with renal tissue or in the bulk urine without a direct tissue interaction. The available 

evidence demonstrates that calcium stones do form in contact with tissue, but proof that 

formation in urine can also occur is lacking. If the predominant way in which stones form is 

on anchored sites in the renal papillae, then the nature of those sites, and the way in which 

they occur, is an important part of the story of stone pathogenesis.

Growth on interstitial apatite deposits

Clinically important CaOx stones can form as overgrowths on interstitial apatite deposits 

known as Randall’s plaque. During percutaneous or ureteroscopic stone removal surgery, 

CaOx stones — including stones of clinically significant size — can be seen growing on 

human renal papillae (Figure 1). These stones can be detached only with some effort, 

whereupon an attachment site can be seen on the stone. In some cases, the corresponding 

regions of attachment on the renal papillae are also visible to the surgeon.

In a study that included nine patients with idiopathic CaOx stones (those with systemic 

disease were excluded) we found that 78% of 115 stones visualized at surgery were attached 
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to papillae, and of these 90% were attached over plaque, which itself occupied ≤5% of the 

papillary surface area.6 In a separate study of unattached stones in the same patients, 

evidence of an attachment site — an apatite deposit — was present on all of these stones, 

suggesting an origin on plaque.7

The percentage of patients without hypercalciuria who form CaOx stones on plaque is 

unknown. In an unselected population of 78 patients who underwent percutaneous 

nephrolithotomy (PNL), Linnes et al. identified 37 patients (of whom 26 were female) with 

idiopathic CaOx stones.8 These patients were not remarkably hypercalciuric (mean 24 h 

urinary calcium level of 210 mg). Although the researchers reported a mean plaque surface 

area coverage of 3.6%, they did not indicate whether or not the CaOx stones were found on 

plaque. In a subsequent study that included 42 idiopathic patients with CaOx stones who 

underwent PNL, abundant plaque (>5% surface area coverage) was found in 10 patients (of 

whom six were male).9 These patients had higher urinary calcium excretion (291 mg per 

day) than those with lower plaque abundance (of whom eight were male; 187 mg per day). 

In a third study, these researchers found no evidence of increased plaque or urine calcium in 

95 patients who formed idiopathic CaOx stones (of whom 42 were male) compared with 19 

healthy individuals or 23 patients who formed uric acid stones.10

Although these studies from a single group of investigators do not report the location in 

which the stones were formed, analysis of stones by micro-CT, showed that those from 

patients with >5% plaque surface area coverage were more likely to show evidence of 

growth on plaque than those from patients with <5% plaque surface area coverage. Future 

surgical series will clarify the frequency with which stone growth on plaque can be 

documented using endoscopy.

Formation of stones on plaque can also be investigated via careful analysis of the stones 

themselves. In a large series of stones analyzed in a French laboratory using infrared 

spectroscopy and morphoconstitutional analysis, 34% of 30,149 intact stones collected 

between 1989 and 2013 that were at least 85% CaOx showed evidence of having formed 

over Randall’s plaque11. Moreover, a marked increase in the frequency of nucleation of 

stones over plaque occurred between 1990 and 2010 in men and in women, particularly in 

young adults. Analysis of CaOx stones passed between 2009 and 2011 showed that among 

patients aged 20–29 years, approximately 60% of those passed by women and 50% of those 

passed by men had nucleated over plaque, compared with 20% of those passed by women 

and 25% of those passed by men aged ≥70 years. It is not possible to determine how many 

of these patients were idiopathic stone formers, but it is probable that the majority did not 

have systemic disease.

The phenomenon of CaOx stones growing on interstitial plaque has also been observed in 

patients with CaOx stones owing to primary hyperparathyroidism12, ileostomy13 and small 

bowel resection14 as well as in idiopathic patients whose stones are composed mainly of 

hydroxyapatite15 or brushite16. Patients who form idiopathic hypercalciuric CaOx stones are 

unique, however, because growth on plaque seems to be the only mechanism of stone 

formation and plaque is often the only renal tissue mineralization. In patients with systemic 

diseases and in patients who form hydroxyapatite or brushite stones, growth on plaque is 
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found in combination with a different kind of tissue mineralization: plugging of inner 

medullary and papillary collecting ducts with crystals of hydroxyapatite, brushite or CaOx, 

depending on the clinical condition17 (discussed below).

Plaque formation—The initial sites of plaque formation are the basement membranes of 

the thin limbs of the loops of Henle, in which plaque appears as microspherules of 

alternating organic and apatite crystal laminations (Figure 2)18. Subsequently, either by 

extension or additional formation, plaque appears in the papillary interstitium. Plaque that 

forms in this location is an amalgam of apatite crystals in an organic matrix that contains 

osteopontin19, inter-α-trypsin inhibitor heavy chain 320, and other molecules that have yet to 

be determined.

High resolution CT imaging of plaque within intraoperative tissue biopsy samples from 

patients with idiopathic CaOx stones supports the idea of plaque extension from the thin 

limbs of the loops of Henle into the interstitium. In some images mineral can be seen 

forming along the long axis of a thin limb and merging smoothly with the plate-like 

interstitial plaque21. An analysis of papillary biopsy samples from 12 patients with 

idiopathic CaOx stones who underwent PNL identified plaque in all patients22. The plaque 

deposits were located in the interstitium and in the basement membrane of the tubular 

epithelium; the specific tubule segments involved were not reported. X-ray dispersive 

microanalysis showed that the deposits were composed of calcium and phosphate. In the 

interstitium, plaque deposits were mixed in with long thin fibers of collagen. The collagen 

fibers act as a scaffolding for the heterogeneous nucleation of CaP crystal as is seen in bone 

formation. These findings are confirmatory of our work.

The mechanisms that lead to the formation of interstitial plaque are unknown. A role of 

osteogenesis can be excluded because the critical bone genes RUNX2 and SP7 (also known 

as Osterix) were not expressed at sites of plaque in biopsy samples from nine patients with 

idiopathic CaOx stones23. By contrast, these genes were expressed in samples from 10 of 12 

patients with medullary sponge kidney disease23. The rather primitive papillary interstitial 

cells of patients with medullary sponge kidney do express RUNX2 and SP7, but the sites of 

expression are never the sites of mineral deposition. In patients with medullary sponge 

kidney, tiny stones can be found within dilated cystic terminal collecting ducts, but bone 

genes are not expressed at these sites.

We have observed that plaque coverage is a direct function of urine calcium excretion and an 

inverse function of urine pH and urine volume24. The mechanism by which urine calcium 

influences plaque formation may be related to renal tubule calcium reabsorption, which is 

decreased in stone formers with hypercalciuria. In particular, less calcium is reabsorbed in 

the proximal tubules of hypercalciuric stone formers, and more is delivered into the distal 

nephron. In the outer renal medulla, the vascular bundles are surrounded by a ring of thick 

ascending limb (TAL), which reabsorb calcium independently of water25. Calcium 

reabsorption in the TAL occurs mainly via the paracellular pathway26 and is driven by the 

transepithelial voltage difference between tubule lumen and the blood. As delivery of 

calcium to the TAL increases, reabsorption of calcium will tend to increase at the same rate, 

and as water is not reabsorbed the concentration of calcium within the vascular bundles will 
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increase. The descending vasa recta provide blood to the papillary capillary network that 

surrounds the thin limbs of the Loop of Henle in which plaque particles originate18. In 

principle increased proximal tubule delivery of calcium can, therefore, foster papillary 

plaque formation via a mechanism that we have called ‘vas washdown’27. This idea is 

compatible with what is known about plaque formation and renal physiology, but has yet to 

be proven experimentally. Supersaturations in the papillary interstitium that might affect 

plaque formation are largely independent of urine supersaturation, and these two types of 

supersaturation have different physiological causes.

Stoller and colleagues published arguments in favour of plaque genesis in the vasa recta, 

based on a study of cadaveric kidneys from 50 consecutive autopsies (including those of two 

individuals who were stone formers) in which papillary calcifications were radiologically 

detected in 57% of kidneys. Calcifications were found in the interstitium around tubules, and 

hypertension was the factor most strongly associated with such calcifications. Epidemiologic 

data linking stone formation to cardiovascular disease28 is cited as supporting the link to 

vascular disease, however histologic. evidence of a vascular site of origin is not evident in 

the majority of data on stone formation.

Two animal models of plaque formation have been produced: the NHERF-1 knockout mouse 

and a Tamm-Horsfall protein knockout mouse29. These models might prove to be a 

promising tool for further investigations into the pathogenesis of renal stones.

Stone formation over plaque—The process of CaOx stone formation over plaque 

cannot proceed unless the urothelium is compromised such that urine supersaturations can 

drive new crystal formation. The exposed surface of plaque is covered by a multilayered 

ribbon of alternating crystals and organic matrix, which faces the urinary space (Figure 2). 

Given that plaque is exposed to urine, the formation of an inner organic layer seems to be the 

first event. As this layer contains uromodulin (also known as Tamm-Horsfall protein) it must 

be of urine origin30.

Successive layers of hydroxyapatite nucleation and organic overlays create the multilaminar 

covering ribbon over the exposed plaque. The form of apatite in the ribbon is amorphous30;it 

does not have the exact structure of mature apatite and is rather in the form of tiny highly 

hydrated crystals. This form transitions to mature apatite at the urinary surface, which 

creates larger and more angular spiky crystals that build up the apatite–matrix base of the 

new stone. This base can be seen when stones are removed, or when unattached stones that 

have formed on plaque are carefully inspected31. The processes that convert the orderly 

laminations of the ribbon into the less regular and more bulky stone base, and convert apatite 

nucleation into CaOx nucleation to make up the bulk of the final stone, are unknown but 

presumably involve conversion of amorphous apatite into mature apatite.

Growth on tubule plugs

Plugging of Bellini ducts and inner medullary collecting ducts occurs in some patients with 

idiopathic CaOx stones8, 10, in virtually all patients with idiopathic brushite or 

hydroxyapatite stones15 and in all stone formers with systemic diseases such as primary 

hyperparathyroidism12, bowel diseases that include ileostomy13, small bowel resection14, 
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obesity bypass procedures32, renal tubular acidosis33, cystinuria34, and primary 

hyperoxaluria35. The location of Bellini duct plugs means that they are exposed to the tubule 

fluid on their proximal surface and the urine on their distal surfaces,. They can grow upward 

into the nephron and outwards into the bulk urine (Figure 3).

As plugs open onto the urinary space their distal ends are exposed to the supersaturations 

present in urine. These open ends often have overgrowths31, which are sometimes described 

as ‘microliths’. Although the hypothesis is attractive, no proof yet exists that plug 

overgrowths can increase in size to form clinically relevant stones. Plugging occurs within 

the renal epithelial compartments, causes obvious local injury, and is an integral part of the 

complex mineralization of the kidneys of patients who form stones.

Brushite stones—When brushite is present in stones it is usually the predominant crystal 

component, although stones may also contain some CaOx or apatite. Patients who form 

brushite stones show a much wider range of plugging severity that those who form other 

types of stones. Some papillae can be pristine apart from scattered interstitial apatite plaque 

(Figure 4), whereas others show tubule plugging with crystals, dilated Bellini duct openings, 

pitting and retraction16. Histological changes in plugged tubules include massive dilation, 

loss of epithelium and peritubular fibrosis. Plugging can be visualized during surgery; 

dilation of the Bellini duct is can be clearly seen, whereas plugged inner medullary 

collecting ducts are visible through the urothelium as elongate yellow cylinders that reflect 

crystal casts.

Apatite stones—These stones, which are particularly common among women, are 

composed predominantly (> 50%) of apatite; the remainder is CaOx. Much like patients who 

form brushite stones, patients who form apatite stones also form apatite plugs in their Bellini 

ducts and inner medullary collecting ducts (Figure 5). These plugs are generally smaller and 

far more numerous than those of patients who form brushite stones. In addition, interstitial 

calcifications of a kind not seen in other stone formers are also present15, which are irregular 

randomly distributed

laminar deposits of interstitial HA and matrix, without microspherules, and with a very high 

crystal-to-matrix ratio (Figure 5). The significance of these calcifications, which we have 

termed ‘novel interstitial plaque structures’, is not yet known.

As intratubular apatite deposits are so numerous, the tissue of some papillae can be almost 

completely replaced by crystal plugs, and nephrocalcinosis may be apparent on radiographs. 

In this respect the papillae are similar in appearance to those found in patients with distal 

renal tubular acidosis, and careful interpretation of blood and urine testing is necessary to 

avoid misdiagnosis.

Plug composition—Although few plugs have been harvested for study, their diversity is 

remarkable (Figure 3). A plug isolated from a patient with idiopathic hydroxyapatite stones 

had a tubule segment composed of hydroxyapatite and an overgrowth of hydroxyapatite and 

CaOx whereas a patient with idiopathic brushite stones produced a plug with a tubule 

segment that contained brushite, hydroxyapatite and CaOx and an overgrowth with a center 
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of CaOx and an outer region of brushite15. A plug from a patient with stones resulting from 

ileostomy had an hydroxyapatite tubule segment with a pure CaOx overgrowth31, and a plug 

from a patient with primary hyperparathyroidism had an intratubular portion of 

hydroxyapatite with an overgrowth of hydroxyapatite 31. In our analysis of 12 patients with 

medullary sponge kidney disease we found a single plug, which was composed of a mixture 

of hydroxyapatite and CaOX in the tubule and overgrowth regions23. We also found multiple 

examples of tiny (500 μm diameter) round microliths made of lamina of hydroxyapatite and 

CaOx in the dilated and pathological inner medullary collecting ducts of these patients. How 

these microliths form is unknown.

Cortical changes—As only ~350 Bellini ducts drain the nephrons of a single kidney25, 

one might expect to find changes in the cortical tissue of patients with substantial plugging 

in comparison to that of patients in whom plugging is not found. Among patients with 

idiopathic CaOx stones who did not have plugs, cortex (Figure 6) looked similar to that of 

people without kidney disease15. Cortex from patients who formed brushite or 

hydroxyapatite stones showed scattered regions of scarring and nephron loss15. Given this 

scattered distribution it is unsurprising that such scarring rarely results in a reduction in renal 

function15, 16, 36.

Remaining questions

We know from observation of human kidneys that growth on plaque occurs and is 

widespread among patients who form calcium stones, whether idiopathic or secondary to 

systemic disease. Tubule plugs give rise to overgrowths that resemble kidney stones in their 

composition, but overgrowths observed so far are much too small to produce clinical disease. 

The natural assumption is that these overgrowths increase in size and become clinically 

relevant stones, but this mechanism remains to be proven. We have not yet found stones of 

clinically important size attached to plugs, suggesting that overgrowths do not increase in 

size to form stones in this location. Such growth might occur in the crevasses of the calyces, 

but no method yet exists to test this hypothesis.

The frequencies with which plaque and plugging occur will gradually be defined as larger 

populations are studied in the future. It is important that such studies clearly document the 

locations in which stones are forming, so that mechanisms of stone formation can be 

clarified.

Formation in free solution is commonly suggested as a mechanism of kidney stone 

formation37, but proof that this mechanism occurs is lacking. Stones that grow from a plug 

overgrowth or form in the bulk urine might look the same. The organic stones, cystine and 

uric acid, might theoretically form in free solution, but no experimental test currently exists 

to prove this hypothesis in humans. The microliths of patients with medullary sponge 

kidneys are perhaps the most obvious candidates for formation in free solution23. These 

round, unattached, whorls of hydroxyapatite and CaOx form in the lumens of dilated inner 

medullary collecting ducts but no proof exists that they grow into clinically significant 

stones.
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Finally, the relationship between cortical changes in patients who form brushite or 

hydroxyapatite stones and clinically important renal disease is unknown. Some evidence 

supports an increased risk of chronic kidney disease among patients who form stones38, 

which perhaps reflects our findings of cortical scarring in patients with inner medullary duct 

plugs, but further research is needed.

Formation of crystals

Role of supersaturation

Supersaturation is accepted on physical chemistry grounds as the prime source of free 

energy that drives the nucleation and growth of crystals39, 40. The supersaturation of urine 

with respect to the relevant crystal phases in stones can be estimated using a well-established 

set of measurements41, 42 and computer programs that calculate the simultaneous ion 

equilibria in solution of these stone salts, comparing them to the known thermodynamic 

solubility constants to derive estimates of supersaturation. [ref: Finlayson B. “Calcium 

Stones: Some Physical and Clinical Aspects”, in Calcium Metabolism in Renal Failure and 

Nephrolithiaisis, David DS, ed. John Wiley and Sons, New York 1977. pp 337–382]. At least 

two supersaturations are always of concern in patients who form calcium stones: CaOx and 

CaP. Even patients who form the purest idiopathic CaOx stones over plaque and have no 

tubule plugging require that hydroxyapatite form as the base of these stones30. In almost all 

patients with idiopathic calcium stones who also have tubule plugging, hydroxyapatite and 

brushite as well as CaOx can be found in plugs and stones14, 31. Whether or not specific 

attempts to regulate both CaP and CaOx supersaturation will lead to improved stone 

prevention could perhaps be evaluated in future trials. Given the current lack of trial 

evidence, and little obvious risk, monitoring and controlling both supersaturation values 

seems prudent as a clinical approach.

With perhaps the exception of minor oxalate secretion in some patients who form idiopathic 

calcium stones43, the main stone crystal components — calcium, phosphate and oxalate — 

are filtered and reabsorbed so supersaturation of urine cannot exceed that of blood except 

through water extraction along the nephron. Urine supersaturation is essentially the stored 

energy produced by water extraction, which can be dissipated by driving phase change40. 

This well established paradigm emphasizes the remarkable power of simple hydration; by 

reducing water reabsorption, fluids reverse the primary engine of crystallization.

Inhibition by urine proteins

Modern techniques have identified >1000 urine proteins44, 45, many of which have long 

been known for their abilities to kinetically retard calcium crystal nucleation, growth and 

aggregation46, 47. Stones contain many such proteins, presumably because their crystals have 

adsorbed them from urine as they formed48.

Urine proteins are the main reason why urine can remain stable for days despite 

supersaturation; simple salt solutions with a similar level of supersaturation are unstable40. 

Essentially, the proteome alters the link between supersaturation and crystallization. In 

simple solutions supersaturation and crystallization are tightly related, whereas in urine 
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supersaturation is necessary to achieve crystal formation and prevent crystal dissolution, but 

a particular level of supersaturation cannot be predicted to result in new crystal formation 

due to the presence of an unknown number of inhibitors. The idea of comparing the urine 

supersaturation of healthy individuals and patients who form stones, and identifying a level 

of supersaturation that will reliably distinguish between the two groups is, therefore, flawed.

Crystal interactions

Brushite—In urine, when nucleation is induced in vitro by addition of calcium, the initial 

phase that forms is usually brushite49. Oxalate can bind to calcium atoms on the surface of 

brushite and begin to form CaOx crystals. As CaOx crystals are less soluble than brushite 

they are able to cannibalize the brushite provided the solution is supersaturated with respect 

to CaOx40, 50. In the presence of osteocalcin40, hydroxyapatite can begin to form on the 

surface of brushite with liberation of a proton as the monohydrogen phosphate of brushite is 

taken up into the hydroxyapatite lattice as trivalent negative phosphate ions.

As a result, brushite is usually a transient phase in urine, and one would not generally expect 

to find brushite in kidney stones. Indeed, large series of stones have reported that only 

approximately 1% contain brushite51, 52.. Mechanisms of brushite persistence might involve 

specific patterns of the urine proteome, but this hypothesis has not yet been investigated.

Citrate—Citrate ions bind calcium53 so reduce the amount of calcium that is available to 

bind with oxalate or phosphate and thereby lower supersaturation with respect to all of the 

calcium stone crystals54. Binding of citrate to brushite crystals widens their growth plates so 

slows their growth and inhibits the formation of new brushite as oxalate and apatite use it as 

a source of ions40. Citrate also binds to growth ridges on CaOx crystals and slows their 

growth40, 55.

It is important to note that brushite crystal cannibalization has been shown to occur in vitro 
rather than in whole urine. Likewise the effects of citrate on crystals have only been proven 

in simple solutions. All crystals follow the same laws of physics, but given the huge urine 

proteome with its crystal active molecules, the interactions of crystals in urine and with 

citrate might not be fully predicted by in vitro studies.

Idiopathic hypercalciuria

It is the molarity of calcium, oxalate, phosphate, and citrate, along with urine pH, that 

mainly determine SS for CaOx and brushite, and molarities reflect the relationship between 

solute excretion and urine flow. Hypercalciuria is associated with higher levels of 

supersaturation at any given urine flow when compared to normal calcium excretion. 

Idiopathic hypercalciuria is familial [ref], found in up to 50% of idiopathic calcium stone 

formers and is often of considerable magnitude, so it has long occupied the attention of 

clinicians and scientists56. Increases in oxalate excretion and reductions in citrate excretion 

might well be of equal importance to hypercalciuria in terms of stone formation but are not 

discussed in this Review.

Coe et al. Page 9

Nat Rev Nephrol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Definition

Although hypercalciuria can result in renal stones and probably also bone mineral loss and 

fractures57, it is not a disease per se, but rather represents the upper tail of a continuous 

distribution, similar to height, weight or blood pressure.

As urine calcium excretion is a continuously distributed variable it is not ideal or even 

reasonable to choose a single cut-off point to define ‘normal’ levels. Rather, similar to blood 

pressure and body weight, urine calcium excretion should be considered a graded risk factor, 

and the calcium excretion rate of the individual patient should be considered along with 

other factors that affect urine supersaturation when making treatment decisions.

Data from epidemiological studies enable correlation of various levels of urine calcium 

excretion with the relative risk of stone formation58. For both sexes, the lower 95% 

confidence interval (CI) for a relative risk ratio for stone formation of >1 (that is, increased 

risk) is present at urine calcium levels of about 200 mg daily. This value could, therefore, be 

considered the lower limit of clinical hypercalciuria and the threshold for consideration of 

treatment measures aimed at lowering urine calcium excretion. Of course, being a graded 

risk factor, lowering of urine calcium levels to <200 mg might be appropriate in certain 

patients, such as those with persistent stone formation.

Mechanisms

Increased gut calcium absorption—In individuals with normal urinary calcium 

excretion, intestinal calcium absorption rises with dietary intake; on average around 25% of 

dietary calcium is absorbed in both men and women. By contrast, around 30% of dietary 

calcium is absorbed in patients with idiopathic hypercalciuria.59–70

Gastrointestinal calcium absorption is mediated by both epithelial transport and passive 

paracellular absorption71. The increased fraction of dietary calcium that is absorbed in 

patients with idiopathic hypercalciuria suggests that epithelial transport of calcium is 

increased in these patients. As the vitamin D hormone system increases epithelial calcium 

transport, increased calcium absorption in patients with idiopathic hypercalciuria could be 

the result of increased serum calcitriol levels, increased tissue vitamin D receptor expression 

or a combination of these factors. Indeed, the serum calcitriol levels of individuals with 

idiopathic hypercalciuria are generally higher than those of individuals with normal urinary 

calcium excretion72, suggesting that activation of the vitamin D hormone system might be 

an integral component of idiopathic hypercalciuria73. Inbred hypercalciuric rats have normal 

serum calcitriol levels, but high intestinal and renal vitamin D receptor expression and 

enhanced intestinal epithelial calcium absorption74.

Increased renal calcium loss—Two mechanisms exist by which renal calcium losses 

might be increased in patients with hypercalciuria: increased filtered load of calcium or 

reduced tubule calcium reabsorption. Under controlled dietary conditions, the serum 

concentrations of ultrafilterable calcium in patients with idiopathic hypercalciuria and 

individuals with normal urinary calcium levels overlap both fasting and fed 75. Filtered loads 

of calcium do not differ, and show no tendency to increase with meals in either group75. By 
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contrast, the urinary calcium levels of patients with idiopathic hypercalciuria exceeds that of 

normal individuals during fasting, and increased greatly above normal levels in the fed 

state76. This increase occurs because of a marked fall in overall tubule calcium 

reabsorption75.

Although the levels of insulin and parathyroid hormone both change with meals and can 

differ between individuals with and without hypercalciuria, a decrease in calcium 

reabsorption in these groups occurs at overlapping levels of these hormones77. Likewise, the 

levels of fractional sodium reabsorption overlap in these the two groups75. Tubule calcium 

reabsorption in patients with idiopathic hypercalciuria and those with normal calcium 

excretion, therefore, differs independently of insulin levels, parathyroid hormone levels and 

sodium handling77, 78.

The delivery of calcium out of the proximal tubule into more distal nephron segments can be 

calculated using endogenous lithium clearance as a marker for proximal tubule reabsorption. 

Using this technique we found that distal calcium delivery was increased in patients with 

idiopathic hypercalciuria compared with individuals with normal calcium excretion79. This 

finding indicates that the proximal nephron segments contribute to the increase in urine 

calcium excretion in these patients.

Bone mineral balance

Most patients with idiopathic hypercalciuria seem to have increased intestinal calcium 

absorption coupled with decreased renal calcium reclamation. However, urinary calcium 

excretion often exceeds gut calcium absorption in balance studies, and in fact, when dietary 

calcium intake is very low, patients with idiopathic hypercalciuria can excrete more calcium 

than they ingest81.

These data suggest that idiopathic hypercalciuria will cause bone disease when patients are 

challenged with a low calcium diet for stone prevention81. Consistent with this hypothesis, 

many studies have shown reduced bone mineral density and an increased incidence of 

fractures among patients with idiopathic hypercalciuria57. This is one reason why low 

calcium diets are not advisable for treatment of stone formers with idiopathic hypercalciuria. 

As patients with idiopathic hypercalciuria seem to have a generalized alteration of both gut 

and renal calcium handling, and are at risk of bone loss, attempting to separate patients into 

those with primarily absorptive or renal hypercalciuria is not clinically useful.

Patient management

Management of supersaturation

The urine supersaturation of a patient who is actively forming new stones is clearly too high 

with respect to the crystals in the stones that are being formed. Our current stone treatments 

aim at decreasing urinary supersaturation with respect to the stone mineral by a significant 

margin, perhaps by half. Lowering urine supersaturation often requires multiple 

interventions, which may include increased fluid intake, dietary counseling, and 

medications. Interventions should be targeted at the factors which are most likely to be 

raising supersaturation in a given patient, uncovered by 24 hour urines done prior to 
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treatment. Depending on stone (and supersaturation) type, these could include inadequate 

urine volume, elevated urine calcium, oxalate, or uric acid, or low urine citrate. A general 

approach to stone prevention is outlined in Box 1. Although no trials have specifically 

investigated whether management of supersaturation is more effective than routine drug 

therapy without such management82 for prevention of stone formation, we believe that 

management of supersaturation is justified and clinical trials of such an approach are not 

unreasonable. Patients should always be followed up with 24 hour urine measurements 4–6 

weeks after treatment is initiated, to assess the success of treatment at lowering 

supersaturation. If supersaturation persists, treatment can be adjusted according to the 

persistent risk factors.

Box 1

Management of patients who form idiopathic calcium stones

• Daily fluid intake should be high (>3 l on average) to achieve at least 2 l of 

urine daily; fluid intakes ≥3.5 l daily to achieve urine volumes of ≥≥2.5 l daily 

are advisable with adjustments for higher fluid needs depending on work, 

climate, and lifestyle. Accurate measurement of urine volume during 

treatment is essential.

• In patients who are hypercalciuric, dietary calcium levels should be at least 

1,200 mg daily (calcium should be obtained preferably from food rather than 

supplements) and dietary sodium levels should be restricted to ≤ 1.5 g daily.

We suggest using thiazide diuretics when high urine volume and reduced sodium intake 

fail to reduce supersaturations to half of their original values, when this end point has 

been reached but new stones form, and in patients who are unable or unwilling to alter 

their fluid and sodium intake sufficiently to reduce stone risk.

• Urine citrate levels should be increased to >400 mg daily using potassium 

citrate or other oral potassium-based alkali.

• In patients with urinary citrate ≥400 mg daily or with calcium phosphate 

stones, the use of alkali supplements has not been specifically tested and 

theoretical considerations suggest a possible adverse effect in the latter 

instance.

Fluid intake

Levels of urine supersaturation vary with urine flow rate and food intake (figure 7), in both 

normal subjects and hypercalciuric calcium stone formers fed identical diets and studied 

over the course of a day. During fasting, supersaturations of CaOx and CaP increase steeply 

as urine flow rate falls below 100 ml/h (Figure 7)76. The relationship between 

supersaturation and urine flow is less regular for CaP than for CaOx because urine pH 

strongly influences CaP supersaturation52 but not CaOx supersaturation. However it is clear 

that fluid intake markedly decreases supersaturation for both stone salts. A urine flow of 100 

ml/h during fasting and overnight, and 125 ml/h when fed would be predicted to minimize 
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urine supersaturation. Given an estimate of 0.9 l per day (40 ml/h) insensible water losses83 

among patients who are not exposed to an extreme of climate, fluid intakes of 140 ml/h 

during fasting and overnight and 165 ml/h when fed would be expected to achieve this urine 

flow. Lifestyle habits, climate, working conditions, and the use of therapies that lower urine 

calcium or oxalate excretion might alter these requirements. Our calculations suggest an 

ideal fluid intake of about 3.5 l per day to reduce the risk of stone formation; however, an 

intake of this volume might not be practical. As patients might not accurately know their 

urine volumes, measurement during treatment is essential.

Validation of the importance of fluids is provided by a randomized trial of water intake done 

in 200 idiopathic calcium stone formers who had formed a single stone. After five years, 

12% of the treated patients, who increased their urine volume from 1068 ml at baseline to 

2061 ml during treatment, had a recurrent kidney stone, compared to 27% of the controls, 

whose baseline urine volume of 1008 ml did not change during the study (p=0.008). 

Supersaturations for both calcium oxalate and calcium phosphate decreased significantly in 

the treated arm.

Low sodium diet

Urine calcium excretion is linearly related to urine sodium excretion, in both normal subjects 

and stone formers, and lowering sodium intake can lower urine calcium. A number of 

controlled experiments have documented the effects of changes in dietary sodium intake on 

urinary calcium excretion in healthy individuals84–92 and in patients with idiopathic 

hypercalciuria87, 91–97. Moreover observational studies have shown changes in urine calcium 

levels in these groups when dietary sodium levels have changed spontaneously94, 98–100.

A study of men with idiopathic hypercalciuria and calcium stones compared the effects of a 

low calcium, low oxalate diet to those of a diet with 1,200 mg calcium, reduced sodium and 

oxalate protein101. In this study, 23 of 51 patients on the low calcium diet and 12 of 52 

patients on the reduced sodium and protein diet formed a new stone over 5 years (P <0.01). 

The relative contributions of the lowered sodium and protein intakes on stone formation 

cannot be determined. However, given its remarkable ability to lower urine calcium, a trial 

of low sodium diet alone versus thiazide might be justified.

No data are available on the effect of sodium on bone balance in patients with idiopathic 

hypercalciuria, but the findings of a study of dietary sodium and calcium intakes in 

menopausal women suggest that a reduced sodium diet might benefit bone balance in the 

setting of idiopathic hypercalciuria88. As expected, calcium absorption was higher in women 

who received high calcium diets than in those on low calcium diets and calcium balance was 

negative in the low calcium diet groups. In the low sodium, high calcium diet phase, bone 

balance became positive because calcium absorption was the same as for high sodium, high 

calcium diet, but fecal and urine calcium losses were reduced with reduced dietary sodium.

In patients who are hypercalciuric, dietary calcium should be ample (≥1200 mg) and dietary 

sodium should ideally be restricted to < 1.5 g (65 mmol) per day as recommended for the 

US adult population by the Centers for Disease Control and Prevention102. This low sodium 

diet has the potential to reduce urine calcium levels and possibly maintain or even increase 
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bone mineral stores. It is preferable to obtain calcium from foods rather than supplements, 

but if supplements are used they should be taken with meals.

Thiazide and thiazide-like diuretics

Thiazide diuretics lower urinary calcium excretion103 and have been used to prevent the 

formation of calcium stones104. The effectiveness of this therapy is presumed to arise from 

the hypocalciuric action of thiazide, although this hypothesis has not been rigorously tested.

Among a welter of shorter trials of thiazide diuretics for stone prevention, three stand out for 

being randomized controlled trials with a treatment period of 3 years. First, in 1984, Laerum 

et al. showed that treatment with hydrochlorothiazide (25 mg twice daily) reduced stone 

recurrence in patients with urolithiasis; 10 of 25 patients in the placebo group formed a new 

stone compared with only four of 23 patients in the hydroclorothiazide group (P <0.01)105. 

In 1988 Ettinger et al. reported that treatment with chlorthalidone (25 mg daily) reduced the 

recurrence of CaOx stones; 12 of 26 patients in the placebo group versus 4 of 28 patients in 

the treatment group formed a new stone (P <0.01)106. Finally in 1993, Borghi et al. showed 

that treatment with the nonthiazide diuretic indapamide (2 mg daily) reduced stone 

recurrence in patients with calcium nephrolithiasis and hypercalciuria; nine of 21 patients in 

the placebo group and only six of 43 patients in the treatment group formed a new stone 

during the treatment period (P <0.01)107. Although all three studies were limited by 

incomplete follow up of lost participants, and another randomized trial might be justified, 

these data suggest that thiazide is effective for stone prevention.

In four men, we performed a complete analysis of tubule reabsorption before and after 6 

months of treatment with chlorthalidone 25 mg daily108. Thiazide reduced urine calcium 

excretion, fractional calcium excretion, and fractional lithium excretion, indicating that its 

effect involves reduced distal delivery of calcium out of the proximal tubule. These results 

suggest that thiazide might not only reduce stone formation, but also formation of interstitial 

plaque, but this hypothesis remains to be tested experimentally.

Data from balance experiments has demonstrated that thiazide therapy can improve bone 

mineral balance in idiopathic hypercalciuric stone formers. We found that chlorthalidone 

therapy (25 mg daily for 6 months) lowered net intestinal calcium absorption to a lesser 

extent than urine calcium excretion, so net bone balance increased109. Additional studies 

have shown increases in BMD110 and reduction of fracture rates111 with thiazide agents. We 

tend to treat patients with thiazide diuretics when high urine volume and reduced sodium 

intake have failed to bring urine supersaturations to half of their original values, when this 

end point has been reached but new stones occur and in patients who cannot or will not alter 

their fluid and sodium intake sufficiently to reduce stone risk.

Potassium citrate

Given its multiple roles in calcium binding and as an inhibitor of the formation of all three 

types of common stone crystal species, citrate is theoretically an important defense against 

stone formation. Consistent with this hypothesis, reduced levels of citrate correlated with 

new onset of stones in long-term observational studies of men and women58. For both sexes, 

the upper 95% confidence interval for the relative risk ratio of becoming a stone former is <1 
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when citrate excretion is >400 mg daily; lower levels of citrate excretion confer 

progressively increased risk of stone formation58. Treatment with potassium citrate or 

another oral potassium-based alkali should, therefore, be used to increase urine citrate levels 

to >400 mg daily and reduce the risk of stone formation in patients with idiopathic calcium 

stones.

Oral citrate intake increases urine citrate levels by imposing an alkali load as the citrate is 

metabolized as citric acid112, 113. Perhaps as a mechanism of removing alkali without raising 

urine pH the kidneys reduce renal citrate reabsorption via effects on the main citrate 

transporter in the proximal tubule114. Urine bicarbonate excretion often increases in 

response to oral citrate intake, resulting in increases in urine pH and CaP supersaturation112.

Potassium citrate — or potassium alkali of any kind — lowers urine calcium excretion in 

patients who form stones115 or in patients with bone diseases116. This effect probably occurs 

because the alkali neutralizes chronic dietary acid load116. As metabolic acidosis decreases 

proximal tubule sodium reabsorption117, 118 via a number of mechanisms119, 120, reversing 

the chronic acid load from diet will likely increase sodium reabsorption, which will help to 

conserve filtered calcium and decrease calcium excretion. Distal effects of diet acid load and 

its reversal have not yet been studied in humans or proven in experimental models.

‘Calcium’ stones—Potassium citrate treatment has been shown to reduce the formation of 

new calcium stones, but no trial has specifically targeted patients who form CaP stones; the 

majority of participants in the published studies made CaOx stones. In the first of two 

double-blind randomized controlled trials, 16 of 20 patients in the placebo group who 

completed 3 years of follow-up formed a new calcium stone compared to five of 18 patients 

who received potassium citrate121. In the second trial122, 16 of 25 patients in the placebo 

group and two of 16 patients in the treatment group formed a new calcium stone after 3 

years of follow up. In both of these trials the reduction in stone formation with therapy was 

statistically significant. A third randomized controlled trial that was not double blinded 

showed no significant difference in stone formation between the study groups; six of 22 

patients in the placebo group and five of 16 patients in the treatment group produced new 

stones over 3 years.123 The difference from the other two trials is clearly the low rate of 

recurrence among the placebo patients.. In two randomized controlled trials that followed 

patients after shock wave lithotripsy, those treated with potassium citrate had lower rates of 

retained fragment growth and new stone formation than untreated controls after 12 months 

of follow up 124, 125

Brushite and apatite stones—The effect of potassium citrate on formation of brushite 

and apatite stones is unclear. On the one hand, inhibition of brushite and hydroxyapatite 

formation, reduction of urine calcium excretion, and reduction of free calcium ions in urine 

should reduce CaP supersaturation and formation of CaP stones. On the other hand, higher 

urine pH directly increases supersaturation with respect to brushite52, 115 and fosters 

hydroxyapatite formation by providing increased receptors to take up the protons that are 

liberated as brushite is converted to hydroxyapatite126. The effect of potassium citrate on the 

formation of brushite or hydroxyapatite stones has not yet been evaluated in a clinical trial. 

In the meantime, physicians who use citrate might mitigate the risk of stone formation by 
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closely monitoring the increases in urine pH, CaP supersaturation and citrate excretion after 

starting treatment, and adjusting treatment accordingly. If stone recurrence persists, use of 

citrate should be re-evaluated.

Conclusions

Many patients who form idiopathic calcium stones are hypercalciuric. Supersaturations of 

CaP and CaOx in the urine and local to the papillary interstitium foster the formation of 

interstitial apatite plaque, overgrowth of amorphous apatite on exposed plaque, and the 

formation of the main CaOx body of attached stones. Citrate and some urine proteins 

kinetically slow the process of stone formation, but plaque overgrowth might eventually 

create stones despite these inhibitors. Supersaturations also create tubule plugs but exactly 

how this process occurs and whether the tiny overgrowths found on plugs become clinically 

significant stones is unknown. Idiopathic hypercalciuria is a renal disorder that results from 

reduced tubule calcium reabsorption. Further research is needed to clarify whether activation 

of the vitamin D hormone system with abnormally high intestinal calcium absorption occurs 

secondary to calcium losses in patients with hypercalciuria or is a primary component of the 

renal disorder. Importantly, low calcium diets are inappropriate and can cause harmful losses 

of bone mineral in these patients. Despite the remaining questions, the available data suggest 

that high fluid intake, low sodium diet and treatment with potassium citrate and thiazide 

diuretics are practical and effective approaches for stone prevention in idiopathic patients.
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Key points

• Idiopathic calcium stones are always accompanied by mineral deposits: 

interstitial deposits of apatite in patients with calcium oxalate (CaOx) stones 

or calcium phosphate (CaP) plugs in those with CaP stones

• Overgrowth of CaOx stones on plaque depends on the formation of an initial 

CaP phase; urine saturations of CaP and CaOx might, therefore, be equally 

important

• Microliths form on the open ends of tubule plugs but proof that these can 

grow into clinically relevant stones is lacking

• Patients with tubule plugs who form CaP stones show varying degrees of 

cortical fibrosis and nephron loss

• Trial data support the use of high fluid intake, potassium citrate, thiazide 

diuretic agents and a reduced sodium diet for prevention of recurrent calcium 

renal stones. [

• As idiopathic hypercalciuria arises from reduced renal tubule calcium 

reabsorption and is associated with negative calcium balance and bone 

disease, management with a low calcium diet is contraindicated
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Figure 1. Interstitial plaque and corresponding attachment site on a CaOx stone
a | Digital endoscopic image of a 3 mm CaOx stone attached to a papillum before stone 

removal by percutaneous nephrolithotomy. Several sites of interstitial plaque (arrowheads) 

are visible as well as blood vessels (arrows) that were used for image orientation. b | 

Following stone removal the papillum was reimaged — an overlay showing the sites of 

interstitial plaque and blood vessels after stone removal has been placed over the original 

endoscopic imagec | “Ghosted” CT image of the detached stone showing a site of calcium 

phosphate (arrowheads) on the papillary surface of the stone. The insert shows a light 

microscopic image of the papillary surface of the detached stone with the site of calcium 

phosphate (arrow). d | The site of calcium phosphate on the papillary surface of the stone 

(arrows) aligns with a region of interstitial plaque with a central blood spot (arrow) on the 

papillium, which is presumably the site of stone attachment. The insert shows the urinary 

surface of the detached stone.
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Figure 2. Sites of interstitial plaque in idiopathic CaOx stone formers
a | Endoscopic image showing irregular whitish regions of interstitial plaque covering the 

papillary tip. b | A biopsy from this region showing black Yasue-stained material (arrow) 

within the interstitial space of the inner medulla. c | Light microscopy and d | transmission 

electron microscopy images showing regions of plaque in the basement membrane of the 

thin loops of Henle only, suggesting that plaque originates at this site. e | The plaque is 

composed of laminated spheres with up to nine alternating light (hydroxyapatite) and dark 

(matrix) layers. f | Micro CT image of plaque that has filled the interstitium and generated 

islands that encompass nearby tubules with no evidence of intraluminal deposits. g | 

Transmission electron microscopy imageshowing a multilayered ribbon-like structure 

separating a region of interstitial plaque (lower right) from an overgrowth of developing 

stone (upper left). In the thickest region of the white lamina of the ribbon (insert), tiny thin 

spicules run perpendicular to the surface adjacent to voids containing tightly packed crystals 
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(small arrows). Numerous small crystals have grown into the outer border of the ribbon 

(asterisk) and merged with large crystals within the urinary space at the developing 

overgrowth. The double arrows indicate a large in-growing crystal.
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Figure 3. Bellini duct plugs with overgrowths in patients who formed calcium stones
a | Sites of crystalline deposits that form plugged Bellini ducts (BD) with an overgrowth 

region protruding into the urinary space. b | Endoscopic image of a plug (arrow) protruding 

from a dilated BD (arrowheads). BD plugs with overgrowths visible by light microscopy and 

micro-CT from c | a patient with idiopathic hydroxyapatite stones, d | a patient with 

idiopathic brushite stones e | a patient with ileostomy, f | a patient with primary 

hyperparathyroidism and g | a medullary sponge kidney. The curved, dotted lines divide the 

BD plugs from the overgrowth regions.
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Figure 4. Renal papilla of a patient who formed brushite stones
a | Endoscopic images of all ten papilla. The numbering corresponds to the x-ray image of 

the collection system. Papilla 1, 6, 7 and 10 show severe morphological changes including 

pitting (large arrows), flattening, plugs (black asterisk, papilla 7) and yellow plaque. Papilla 

2, 3, 5 and 8 show small pits (white asterisks) whereas papilla 4, 7 and 9 show small sites of 

interstitial plaque (double arrows). b | Scattered inner medullary collecting ducts (IMCDs) 

and Bellini duct (BD) filled with yellow crystalline deposits that have dilated the tubular 

lumens (arrow) and protrude from the opening of the BD (asterisk). Small sites of interstitial 

plaque are also visible (double arrows). c | Sites of yellow plaque (arrows) in the lumens of 

IMCD (asterisk in insert) just beneath the urothelium (arrow in insert) and near sites of 

interstitial plaque (double arrows). d | showing extensive injury in the lining cells of IMCDs 

clogged with mineral deposits (arrows). Regions of extensive interstitial fibrosis surround 

the plugged IMCDs (double arrows) and entrapped and injured adjacent thin loops of Henle 

(asterisk). Giant cells (arrowheads) were occasionally found near damaged IMCDs.
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Figure 5. Renal papilla of patients who formed idiopathic apatite stones
Patients who form apatite stones can be categorized into two groups on the basis of 

endoscopy images: those with a | normal appearing papillae and those with b | severe 

changes that resemble those of patients who form distal renal acidosis stones. Panel a | 

shows a papilla with three separate attached stones (double arrowheads) and no yellow 

plaque or Bellini duct plugs, whereas panel b | shows a papilla with numerous regions of 

yellow plaque (arrows) and a large BD plug (asterisk). Light microscopy images showing c | 

novel interstitial plaque structures (arrow) — a form of plaque that is unique to patients who 

form apatite stones — characterized by irregular, large and randomly distributed laminar 

structures of hydroxyapatite crystal and matrix, and d | numerous plugged inner medullary 

collecting ducts surrounding an area of extensive interstitial fibrosis in a papilla with severe 

changes. Micro-CT images of tubular deposits in biopsy samples from e | a normal 
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appearing papilla with no deposits and f | a severely damaged papilla with numerous small 

deposits.
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Figure 6. Renal cortical changes in patients who formed calcium stones
Histopathology images showing a | moderate changes in the cortex of a patient who formed 

brushite stones, b | patchy change in the cortex of a patient who formed apatite stones, and c 
| minimal interstitial fibrosis and glomerulosclerosis in a patient who formed idiopathic 

CaOx stones.
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Figure 7. Effect of urine flow rate on calcium oxalate and calcium phosphate supersaturations
Urine supersaturations of calcium oxalate (CaOx) and calcium phosphate (CaP) varied 

inversely with urine flow rate in normal subjects (blue) and hypercalciuric idiopathic 

calcium stone formers (red) on the same diet. During fasting both a | CaOx and b |[ the 

figure is mislabeled, the y axis says CaOx, but should say CaP] CaP supersaturation values 

were generally high when urine flow was <100 ml/h. When urine flow was >100 ml/h many 

CaP supersaturation values were less than one, indicating that crystal formation will not 

occur. A much higher urine flow rate was required to reduce CaOx supersaturations to a 

similar level. When the participants were fed the distributions of c | CaOx and d | CaP 

supersaturations shifted to the right because of increased urinary excretion of calcium and 

oxalate. A urine flow rate of around 125 ml/h seems to be an appropriate clinical goal to 

prevent large increases in CaOx and CaP supersaturations. e and f | Although each 

participant provided only one urine sample overnight the general pattern of supersaturation 

and urine flow is similar to that seen during fasting. A goal of 100 ml/h urine flow overnight 

seems reasonable for stone prevention. Data from Bergsland et al. Am. J. Physiol Renal 
Physiol 297, F1017–F1023 (2009)76.
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