46,558 research outputs found

    A Blockchain-based Approach for Data Accountability and Provenance Tracking

    Full text link
    The recent approval of the General Data Protection Regulation (GDPR) imposes new data protection requirements on data controllers and processors with respect to the processing of European Union (EU) residents' data. These requirements consist of a single set of rules that have binding legal status and should be enforced in all EU member states. In light of these requirements, we propose in this paper the use of a blockchain-based approach to support data accountability and provenance tracking. Our approach relies on the use of publicly auditable contracts deployed in a blockchain that increase the transparency with respect to the access and usage of data. We identify and discuss three different models for our approach with different granularity and scalability requirements where contracts can be used to encode data usage policies and provenance tracking information in a privacy-friendly way. From these three models we designed, implemented, and evaluated a model where contracts are deployed by data subjects for each data controller, and a model where subjects join contracts deployed by data controllers in case they accept the data handling conditions. Our implementations show in practice the feasibility and limitations of contracts for the purposes identified in this paper

    B-field Determination from Magnetoacoustic Oscillations in kHz QPO Neutron Star Binaries: Theory and Observations

    Get PDF
    We present a method for determining the B-field around neutron stars based on observed kHz and viscous QPO frequencies used in combination with the best-fit optical depth and temperature of a Comptonization model. In the framework of the transition layer QPO model, we analyze magnetoacoustic wave formation in the layer between a neutron star surface and the inner edge of a Keplerian disk. We derive formulas for the magnetoacoustic wave frequencies for different regimes of radial transition layer oscillations. We demonstrate that our model can use the QPO as a new kind of probe to determine the magnetic field strengths for 4U 1728-42, GX 340+0, and Sco X-1 in the zone where the QPOs occur. Observations indicate that the dependence of the viscous frequency on the Keplerian frequency is closely related to the inferred dependence of the magnetoacoustic wave frequency on the Keplerian frequency for a dipole magnetic field. The magnetoacoustic wave dependence is based on a single parameter, the magnetic moment of the star as estimated from the field strength in the transition layer. The best-fit magnetic moment parameter is about (0.5-1)x 10^{25} G cm^3 for all studied sources. From observational data, the magnetic fields within distances less 20 km from neutron star for all three sources are strongly constrained to be dipole fields with the strengths 10^{7-8} G on the neutron star surface.Comment: 10 pages, 1 figure, accepted for the Astrophysical Journal Letter

    Study and prototype of data system interactions for the Earth Observing System Data and Information System

    Get PDF
    A crucial part of the Earth Observing System (EOS) is its Data and Information System (EOSDIS). The success of EOS depends not only on its instruments and science studies, but also on its ability to help scientists integrate data sets of geophysical and biological measurements taken by various instruments and investigators. NASA contractors have completed Phase B studies of EOSDIS, in particular its architecture, functionality, and user interfacing. At this point in time, it may seem impossible to exercise the EOSDIS or any of its components since they do not exist; i.e., if the EOSDIS is accepted as a totally new system, distinct from any existing DIS. However, if EOSDIS is seen as evolving from existing data systems, then some limited prototyping studies can be conducted by using currently functioning systems. In support of both the EOSDIS Science Advisory Panel and the EOSDIS Project, a prototyping activity was carried out by a cross section of interdisciplinary scientists. That prototyping activity is summarized and some conclusions are drawn that can be used by NASA-Goddard to evaluate and modify the specifications soon to be released in an RFP to build EOSDIS

    LAWS simulation: Sampling strategies and wind computation algorithms

    Get PDF
    In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS

    The asteroseismological potential of the pulsating DB white dwarf stars CBS 114 and PG 1456+103

    Full text link
    We have acquired 65 h of single-site time-resolved CCD photometry of the pulsating DB white dwarf star CBS 114 and 62 h of two-site high-speed CCD photometry of another DBV, PG 1456+103. The pulsation spectrum of PG 1456+103 is complicated and variable on time scales of about one week and could only partly be deciphered with our measurements. The modes of CBS 114 are more stable in time and we were able to arrive at a frequency solution somewhat affected by aliasing, but still satisfactory, involving seven independent modes and two combination frequencies. These frequencies also explain the discovery data of the star, taken 13 years earlier. We find a mean period spacing of 37.1 +/- 0.7 s significant at the 98% level between the independent modes of CBS 114 and argue that they are due to nonradial g-mode pulsations of spherical degree l=1. We performed a global search for asteroseismological models of CBS 114 using a genetic algorithm, and we examined the susceptibility of the results to the uncertainties of the observational frequency determinations and mode identifications (we could not provide m values). The families of possible solutions are identified correctly even without knowledge of m. Our optimal model suggests Teff = 21,000 K and M_* = 0.730 M_sun as well as log(M_He/M_*) = -6.66, X_O = 0.61. This measurement of the central oxygen mass fraction implies a rate for the ^12C(alpha,gamma)^16O nuclear reaction near S_300=180 keV b, consistent with laboratory measurements.Comment: 10 pages, 10 embedded figures, 3 embedded tables. Accepted for publication in MNRA

    Proof of Luck: an Efficient Blockchain Consensus Protocol

    Get PDF
    In the paper, we present designs for multiple blockchain consensus primitives and a novel blockchain system, all based on the use of trusted execution environments (TEEs), such as Intel SGX-enabled CPUs. First, we show how using TEEs for existing proof of work schemes can make mining equitably distributed by preventing the use of ASICs. Next, we extend the design with proof of time and proof of ownership consensus primitives to make mining energy- and time-efficient. Further improving on these designs, we present a blockchain using a proof of luck consensus protocol. Our proof of luck blockchain uses a TEE platform's random number generation to choose a consensus leader, which offers low-latency transaction validation, deterministic confirmation time, negligible energy consumption, and equitably distributed mining. Lastly, we discuss a potential protection against up to a constant number of compromised TEEs.Comment: SysTEX '16, December 12-16, 2016, Trento, Ital

    Environmental protection of titanium alloys at high temperatures

    Get PDF
    Various concepts were evaluated for protecting titanium alloys from oxygen contamination at 922 K (1200 F) and from hot-salt stress-corrosion at 755 K (900 F). It is indicated that oxygen-contamination resistance can be provided by a number of systems, but for hot-salt stress-corrosion resistance, factors such as coating integrity become very important. Titanium aluminides resist oxygen ingress at 922 K through the formation of alumina (on TiAl3) or modified TiO2 (on Ti3Al, TiAl) scales. TiAl has some resistance to attack by hot salt, but has limited ductility. Ductile Ti-Ni and Ti-Nb-Cr-Al alloys provide limited resistance to oxygen ingress, but are not greatly susceptible to hot-salt stress-corrosion cracking

    Infrared emission from ultracompact H II regions

    Get PDF
    Models of circumstellar dust shells around ultracompact (UC) H II regions were constructed that accurately fit the observed IR flux distributions. The models assume spherically symmetric dust shells illuminated by stars whose bolometric luminosity is inferred from the integrated FIR flux densities. Assuming ionization by a single zero age main sequence (ZAMS) star, the relations of Panagia were used to infer the stellar radius and effective temperature for a given luminosity. The grain mixture in the dust shell consists of bare graphite and silicate grains with the optical properties of Draine and Lee and the size distribution of Mathis et al. The computer code of Wolfire et al was used to solve the radiative transfer equations through a spherical dust shell. The model provides monochromatic luminosities, dust temperatures, and opacities through the shell. Aside from the stellar and dust properties, the only other input parameters to the model are the distance to the shell, the form of its density distribution, and its outer radius. Predictions of the model are compared with observations of a typical UC H II region and the run of dust temperature with radius and the optical depth with frequency are discussed
    • …
    corecore